

PADS Power-PCB 软件培训

WINNET 上海银利电子 EDUCATIONAL SERVICES GROUP

日程表 (第一天)

- 08:30 09:00 登记
- 09:00-09:15 简介 公司简介和课程简介
- 09:15-09:30 第一章 (硬件/软件需求)
- 09:30-10:30 第二章 (图形界面、设置、文件管理和直接命令)
- 10:30 10:45 休息
- 10:45 11:15 第二章 (图形界面、设置、文件管理和直接命令)
- 11:15-12:00 第三章 (元件库的管理/库的结构)
- 12:00 13:00 午餐
- 13:00-15:00 第三章 (元件库的管理/库的结构)
- 15:00-15:15 休息
- 15:15 17:00 第四章 (绘图(Drafting)和字符(Text))
- 17:00 17:30 问题与解答

日程表 (第二天)

- 08:30-09:00 签到、前一天问题解答
- 09:00-10:30 第五章 (设计准备)
- 10:30 10:45 休息
- 10:45 12:00 第五章 (设计准备)
- 12:00 13:00 午餐
- 13:00 14:00 第六章 (布局(Placement))
- 14:00 15:00 第六章 (布局(Placement))
- 15:00 15:15 休息
- 15:15 17:00 第七章 (布线(Routing))
- 17:00 17:30 问题与解答

日程表 (第三天)

- 08:30-09:00 签到、前一天问题解答
- 09:00 10:30 第八章 (生成覆铜(Copper))
- 10:30 10:45 休息
- 10:45 11:30 第九章 (设计验证)
- 11:30-12:00 第十章 (CAM输出)
- 12:00 13:00 午餐
- 13:00 14:00 第十章 (CAM输出)
- 14:00 14:30 第十一章 (工程更改命令(ECO))
- 14:30 14:15 特别练习
- 15:15 15:30 休息
- 15:30 17:00 测验
- 17:00 17:15 填写反馈表
- 17:15 结业典礼

第一章

Chapter 1 - Introduction

Software
Hardware

软件安装

- 执行光盘中Autorun.exe 或Setup.exe安装软件
- 产品缺省安装到 \Padspwr 目录

软件/硬件需求

- 有效的操作系统
 - Windows 95 / 98
 - Windows NT (4.0)

Standard Design Memory Requirements

PowerPCB/PowerBGA require:

- 16MB to start on Windows NT 4.0 or Windows 95/Windows 98.
- 20MB to 24MB for 1500 connection designs.
- 32MB in DRC off and 48MB in DRC on for 6250 connection designs.
- 48MB in DRC off and 80MB in DRC on for 8500 connection designs.

Note: Increase the memory as the number of connections increases.

- 有效的硬件
 - Pentium / 100 MHZ (最小)
 - Pentium / 300 MHZ (建议)
 - 小型设计 1500 连线 (20-24 M)
 - 大型设计 5000 连线 (32-42 M)
 - 建议参照 HELP/FREQ ASK QUESTION/MEMORY

软件加密

- PowerPCB 需要一个安全加密装置(Scurity device)
 - 安装在计算机的并口(Parallel Port)上
 - 典型的授权文件名为License.dat (PowerPCB v3.5为 Pcblic.dat)
 - 通常位于 /padspwr/security/licenses 目录下
- 能够被转移到任何其它的系统上
 - 取下加密器(Key)并拷贝授权文件(license.dat 或pcblic.dat)
 - 多个授权文件能够结合在一起组成一个文件

软件加密

- Viewlogic 的授权
 - 同样使用Flexlm的加密方式
- Autoexec.bat 中的定义描述
 - 具有 LM_LICENSE_FILE 定义
 - Windows 95 / 98
- 在Setting/Control Panel/System/ Environment 进 行设置
 - 具有 LM_LICENSE_FILE 定义
 - Windows NT
- 如果有两个以上不同的授权文件
 - 必须用逗号(Comma)和分号(Semicolon)分隔
 - 例如: set lm_license_file=c:\wvoffice\standard\ license.dat,;c:\padspwr\security\licenses\license.dat

第二章

CHAPTER 2 -- USER INTERFACE

POWERPCB INTERFACE	2
MOUSE OPERATION	3
SELECTING USING THE MOUSE	3
KEYPAD COMMANDS	4
ZOOM ICON	5
TOOLBARSICONS	6
TOOL BOXES	
STATUS WINDOW	8
SELECTION FILTER	9
PREFERENCES DIALOG	10
DESIGN TAB:	10
GLOBAL TAB	12
DISPLAY COLORS	14
SELECT USING FIND	15
CAPTURE VIEW	16
VIEW NETS	17
FILE MANAGEMENT	
MODELESS COMMANDS	

图形界面(Graphical Interface)简介

- 用户的图形用户界面(GUI)
 - PowerPCB 的界面简介
 - 鼠标控制
 - 工具条(Tool Bars)
 - 工具盒(Tool Boxes)
 - 状态窗口(Status Windows) / 过滤器(Filter)
- 设置文件(Setup Files)
 - 参数(Preference)对话框
 - 显示设置(Display Settings)
 - 缩放图标(Zoom Icon)
 - 捕获视图(Capture View)
 - 查看网络(View Nets)
- 文件管理

WINNET

上海银利电子

• 直接 (Modeless)命令(也称无模命令)

PowerPCB 的界面

活动的层(Active Layer)

鼠标(Mouse)操作

- 鼠标(Mouse)左键 (LMB)
 - 点击(Click)
 - Shift +点击(Click)
 - Cntrl +点击(Click)
 - 双击(Double Click)
 - 按住并拖动(Hold +Drag)
 - 按住并拖动(在目标上)
- 鼠标(Mouse)中间键 (MMB)
 - 点击(Click)
 - 按住并拖动(Hold +Drag)
- 鼠标(Mouse)右键 (RMB)
 - 放弃选择
 - 项目选择

选择一个目标 添加到被选择目标中 添加到被选择目标中/从被选择 目标中删除 查询/完成操作 成组选择/区域选择 移动目标

以此为中心显示图中内容 放大或缩小

使用鼠标进行选择

- 选择 / 高亮
 - 任何以前被选择的内容现在变成不被选择
 - 鼠标右键打开可选操作
 - 如果你希望不选择任何内容,在空白处按一下鼠标
- 添加方式选择
 - 按Cntrl键的同时在目标上按鼠标左键
- 不选择项目
 - 将鼠标放在已经被选择的目标上,按Cntrl键的同时再 按鼠标左键,将不选择这个内容

另外有效的选择方式

- 选择管脚对(Pin Pairs) = <u>Shift + 选择连线(connection)</u>
- 选择整个网络(Nets) = <u>Click then F6</u>
- 选择一个网络的(Nets) 上的所有管脚(Pins) = <u>Shift + 选择管脚(Pin)</u>
- 选择多边形(polygon)的所有边 = Shift + 选择一个边
- 在多个之间选择 = 选择第一点之后按 Shift

数字键盘命令

- 全部显示 7 •
 - 向上移动一个栅格 8
 - 缩小 9

•

•

•

•

•

•

•

6

2

3

•

- 向左移动一个栅格 4
 - 向右移动一个栅格
- 刷新 1
 - 向下移动一个栅格
 - 放大
- 中心显示 0 •
 - 删除被选目标

缩放(Zoom)图标

- 用于视图区域(View Area)的操作
- 点击左键放大
- 点击右键缩小
- 按住左键宾拖动鼠标将放大或缩小
- 按住鼠标中间键并移动鼠标将以此为中心显示窗口内容

工具条

状态(Status)窗口

为了编辑布局(Edit Place),光表放在 目标上,使用鼠标 选择

如果放置光标在 Postage区域,用 鼠标将选择一个显 示窗口

如果在Postage区 域使用鼠标右键, 将缩放一个窗口大

选择过滤器(Filter)

- 用于打开或关闭设计中选择项目的开关。
- 目标选择标记有效时,其它的将关闭!
- 在被选择层上的项目在有效层上能够被关闭(或打开),所有在这些层上内容能够被冻结或活动。
- 为了改变层的状态,选择Layers中的层后,然后再选择 "Select Items on Layer" 确认框。
- 在这个对话框中的改变信息自动地应用到 设计中。
- 为了打开这个对话框,可以通过选择 Edit/Filter下拉菜单,也可以通过鼠标右 键得到过滤器的选择。

设计参数(Design Preference)对话框

Preferences	使用 Setup/Preference打开
Teardrops Drafting Grids Split/Mixed Plane Global Design Routing Thermals Auto Dimensioning	
✓ Stretch Traces During Component Move	在移动元件后自动布线
Move Preference	布局在线设计规则检查(DRC)开关
C Move By Cursor Location C Move By Midpoint C Move By Midpoint	和布局方式
Length Minimize Group Editing	一一一一光标点击后移动的方式选择
Ouring Move C After Move Off Off Off	成组编辑时切割和粘贴时的 选项设置
Line/Trace Angle Miters Diagonal O Diagonal O Orthogonal	
C Any Angle C Arc C Any Angle	
C Prevent Errors C Warn Errors C Ianzas Classes	
© Off ▶ Drill O⊻ersize: 3	缺省的角度类型
OK Cancel Apply <u>H</u> elp	沿罢左线设计 抑则
WINNET 上海组刊由子	

全局参数(Global Preference)对话框

- Cursor-光标类型和光标选择最小区域
- Bitmap-设置在状态窗口实时滚动
- Bitmap Size- 实际滚动区域的大小尺寸
- Real-time Redraw-设置当内容刷新时,实时-显示方式
- Keep Same View- 保持窗口与缩放无关
- Active Layer-绘制当前有效的层
- Display OLE- 设置OLE目标的显示
- Minimum Display- 设置最小显示宽度
- Automatic Backup- 设置定期备份和文件名
- Units-设置设计的单位

PAT N

显示颜色

N Display Colors Setup				
				Palette De <u>f</u> ault Palette
Color by Layer Apply To All Layers Visible Only 1)Component Side Layer 1 2)Inner Routing Layer 2 3)Gnd Plane Layer 3 4)VDD Mixed Plane Layer 4 5)Inner Routing Layer 5	o All Objects 말 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모 모	ign Items	Copper Errors A Copper Friors Time	Autimes Attributes Attributes A Bottom B Bottom
6)Solder Side Layer 6				
Other Background	Board Outline	Configur	ation	•
Selections	Connection	<u><u>s</u></u>	ave	Delete
	OK	App	dy Ca	incel <u>H</u> elp

使用 Setup/Display Colors打开

- 选择各个彩色下面的圆点, 然后选择目标
- 为了关闭整个目标类型或层的颜色,按左边或上部的确认按钮
- 为了保持事先调整好的颜色,按保存按钮,然后输入一个名字。为了 调用前面保存的颜色方案,选择Configuration右边的向下箭头,然后选 择一个方案名称

•

•

的内容

查找(Find)对话框

📉 Find			
Find By	Ref.Des. Prefix	Ref. Designators	Selected Items
Ref. Designator 📃	C	B1	
Action: Select	MT	R3 —	
<u>V</u> alue: R	B U	R5 R6	
Add to Selection	×	R7 B8 _	
ОК Аррју	Abort	<u>Filter</u> Cancel	<u>H</u> elp

使用 Edit/Find打开

- 允许组合各种搜索方式,在设计中进行搜索所需要
 - 网络名、线性宽度、过孔 类型封装覆铜孤岛

其它选择方式:

为了搜索元件,选择在Find By下面的参考指示符 (Ref Des),对于Action设置为Select,然后选择参考 指示符(Ref Des)的一个前缀(Prefix),当你选择 Apply, 它们将高亮

其它有效作用: 旋转90度、翻转和顺序移动

- 如果你没有选择指定的元件,则可以将所有缺省的 • 元件都选中
- 能够使用过滤器(filter),防止选择不需要的内容 •
- 建议使用选择箭头,它具有优先选择

捕获视图(Capture View)对话框

- 用于保存不同的视图窗口
- 能够保存多达9个视图
- 为了保存视图缩放结果,选择Capture 按钮,输入视图的名称
- 为了看到你保存的视图,选择View下 拉菜单,有效的视图将出现在列表中

 Capture View
 Image: Capture

 View Name:
 Image: Capture

 View1
 Image: Capture

 Image: Capture
 Image: Capture
 <

通过 View/Capture打开

查看网络(View Nets)对话框

W View Nets	
Net List:	⊻iew List:
8N 8N1 8N3 8N4 A0_STB0 ADDR_BUS1 ADDR_BUS2 ADDR_BUS3 ADDR_BUS4	Default GND VDD VDDQ3.3V
A <u>d</u> d >>	<< <u>R</u> emove
Select By: Nets	View Details View Details Image: Traces Plus the Following Unroutes: View Unroutes Details
Color by Net (Pads, Vias, Unroutes)	C All All Except Connected Plane Nets C C C C None
	OK Apply Cancel Help

通过 View/Nets打开

- 用于显示 (或不显示) 连线和导线
- 在Net List内列出了在设计中所有的网络
- 在View List内显示什么网络具有那些特别指定的显示设置
- 为了在Net List中对希望设置显示的网络进行设置,选择Add按钮 将它们移动到 View List 内。选择设置方式,然后再选择颜色
- 为了设置 View details,选择网络然后选择需要进行的显示控制

查看网络(View Nets)对话框

<u>N</u> et List:	<u>V</u> iew List:
8N 8N1 8N3 8N4 AO_STB0 ADDR_BUS1 ADDR_BUS2 ADDR_BUS3 ADDR_BUS4	Default GND VDD VDDQ3.3V
Select By:	Add >> << Remove
Color by Net (Pads, Vias, Unroutes)	View Unroutes Details
	Image: Connected Plane Nets Image: Connetee Image: Connectee <
	OK Apply Cancel <u>H</u> elp

View Detail 选项

- Traces Plus the Following Unroute: 不确认将关闭网络的显示
- All-显示所有连线数据
- All Except Connected Plane Nets- 显示所有没有被连接到平面 层的网络
- Unrouted Pin Pairs-显示管脚之间没有布的连线
- None-关闭所有没有连线网络的显示

文件管理

- 使用**File/Open** 加载你的 .PCB 文件
- 使用 File/Save 保存你的设计文件
- 重新使用(Reuse)的元素能够被象.PCB文件一 样保存和编辑,它们的文件扩展名为.REU
- 文件取省被保存在 Padspwr\Files 目录下

N File Open Look jn:	😋 padspwr	•	? ×
APToolkit BlazeRout Cam Document	ing ole er in PowerBGA ing reuse ation ing Security		
File <u>n</u> ame: Files of <u>t</u> ype:	PowerPCB Files (*.pcb)	•	<u>O</u> pen Cancel

- File\Save- 使用当前的文件名保存
- **File\Save As-** 以另一个名字保存
- File\Import- 读入使用另外格式的数据 (Ascii、 DXF、IDF、OLE 或 ECO)
- **File\Export** 允许数据以另外的格式保存 (Ascii、 DXF或IDF)

文件管理

Mascil Output	X
Filename: D:\corporateder	no\Viewlogic\corpPLACE.asc
Select All	S <u>e</u> ctions:
()	PCB Parameters
Unselect All	Reuse
	□ Text
Eormat:	Lines
PowerPCB V3.0	
	□Vias
<u>U</u> nits:	Decals
Basic 💌	Packages
,	Parts
E 140.7 A	Jumpers
Expand Attributes	
Parts	Routes
	Teardrops
I Nets	Miscellaneous
	Rules
	Pour
	Assembly Options
	Test Points
	1
OK	Cancel <u>H</u> elp

- 双向的传输接口
- 能够转换不同的电子数据到PADS 的电子格式
- 支持 Autocad v13和v14
- 输出选择 *.DXF文件类型,输入文 件名,然后选择OK,输出到 Autocad中

• 用于删除不必要的数据

- 能够输出以前设计的一部分,并在不同的 设计中重新使用它们
- 更新的ASCII文件格式能够被读入到早期 的软件版本中

vajlable:		S <u>e</u> lected:	
	<u>A</u> dd > Add A[] >> < Re <u>m</u> ove	 Component S Component S Inner Routing Gnd Plane La VDD Mixed P Inner Routing Solder Side L Layer_7 Layer_8 	ide Layer Layer 2 yer 3 lane Layr Layer 5 ayer 6
2 - I 1 I			
Select Input Items Boar <u>d</u>	✓ Parts-Top	DXF-File <u>U</u> nit: Mils ▼	οκ
Gelect Input Items ✓ Boar <u>d</u> ✓ <u>2</u> -D Lines	✓ Pa <u>r</u> ts-Top ✓ Parts- <u>B</u> ottom	DXF-File <u>U</u> nit: Mils	OK
Select Input Items Boar <u>d</u> <u>2</u> -D Lines <u>C</u> opper	 ✓ Parts-Top ✓ Parts-Bottom ✓ Routes 	DXF-File Unit:	OK Cancel
Select Input Items Boar <u>d</u> <u>2</u> -D Lines <u>Copper</u> Copper <u>P</u> our	 ✓ Parts-Top ✓ Parts-Bottom ✓ Routes ✓ Keepouts 	DXF-File <u>U</u> nit: Mils	OK Cancel

直接命令(Modeless Commands)

- 直接命令(Modeless Commands)使用命令的前一个或两 个字母执行命令
- 当它有效后会出现提示如何输入
- 按回车执行命令
- 按ESC键退出
- 对于命令的全部列表,请参考Help/Modeless Command
 - G 设计栅格
 - **GR** 布线栅格
 - GV 仅仅过孔的栅格
 - **GD** 显示栅格
 - L 改变当前层为
 - W 改变宽度为
 - SS 搜索或选择元件
 - S 搜索项目内容

直接命令(Modeless
Commands)的例子

Modeless Command

GRID format: G{nullIRMID} <n> {<n>}

Turn POLAR GRID On/Off: GP

Command: g

软件复习

- PowerPCB的界面
- 鼠标操作
- 数字键盘命令
- 缩放(Zoom)图标
- 工具条
- 工具盒
- 状态(Status)窗口
- 选择过滤器(Selection Filter)
- 参数(Preference)对话框
 - 全局对话框\设计(Design)表格

- 显示
- 查找(Find)
- 捕获视图(View Capture)
- 查看网络
- File/Import + Export
 - Ascii
 - DXF

-般练习

己熟悉:

#1-鼠标和键盘

• 放大(Zoom In)和缩小(Zoom Out)

#2 - 各个不同的工具条

•选择图标和工具盒复习

#3-参数(Preference)对话框

•显示、设计和全局

#4-ASCII输出和输入程序

•建立一个ASCII输出、使ASCII输入到一个空白的设计中

使用Train.PCB文件

第三章

CHAPTER 3 -- LIBRARIES

STRUCTURE
PADS LIBRARY STRUCTURE
LIBRARY MANAGER
LIBRARY LIST EDITOR
SEARCHING THE LIBRARIES
PART TYPE EDITING
PART DECAL AND THE DECAL EDITOR
ADDING TERMINALS
RENUMBER TERMINALS
MODIFYING PADSTACKS
EXERCISE #1 - CREATE A NEW LIBRARY
EXERCISE #2 - CREATE A RESISTOR
STEP 1 - PART DECAL CREATION
STEP 2 - PART TYPE CREATION
EXERCISE #3 - CREATE A 12-PIN EDGE CONNECTOR WITH MOUNTING HOLES
STEP 1 - PART DECAL CREATION
STEP 2 - PART TYPE CREATION
USING THE DECAL WIZARD

库的结构

• *=在V3.0版中支持

库文件名和使用

Training.PT3	=	元件类型(Part Type) 库文件
Training.PD3	=	PCB 封装(Decal) 库文件
Training.LD3	=	Logic封装(Decal) 库文件
Training.LN3	=	Line 库文件

有效的库文件实例

Intel.PT3	TTL.PT3	USR.PT3	AMD.PT3
Intel.PD3	TTL.PD3	USR.PD3	AMD.PD3
Intel.LD3	TTL.LD3	USR.LD3	AMD.LD3
Intel.LN3	TTL.LN3	USR.LN3	AMD.LN3

库的使用

- 当网表输入到PowerPCB时,将发生下列动作:
 - 搜索元件库中的元件类型(Part Type (*.PT3))
 - 搜索在元件类型(Part Type (*.PT3)) 中定义的封装(Decal)
 - 附加的门(Gate)和管脚(Pin)交换信息
 - 加载适当的元件到设计中

PADS元件库的结构

库的管理

选择File/Library,执行库管理

- -打开/关闭各个库
- -设置服务器上的库路经
- -设置搜索方式(Search Orders)
- -浏览库的信息
- -建立/编辑元件类型(Part Type)数据
- -建立/编辑CAE封装(Decal)(符号)
- -建立/编辑PCB封装(Decal) (Footprints)

库的管理

📉 Library Manager - sch	nTrain	_ 🗆 🗵	
Library:	ain 🔽	Close	
Edit \$GND_SYMS NO DECAL	Decals Parts	Ne <u>w</u> Lib. Lib. List Attr Manag	
Part Types \$GND_SYMS \$OSR_SYMS \$PWR_SYMS 74HC04 74HC240 74HC240 74HC4040 74HC640 CAP	Lines CAE <u>New.</u> <u>E</u> dit <u>D</u> elete <u>Copy</u>		
Eilter: * Apply	I <u>m</u> port E <u>x</u> port Li <u>s</u> t to File		

活动的库文件名 建立/修改 PCB 封装(Decals) 建立/修改 Part Types 一 建立新的库 修改库的有效性和次序 —— 添加/编辑基本属性 —— 在线帮助 —— 建立/修改 Logic封装(Decals) 建立/修改 Line 数据

元件库列表编辑器

:\corporatedemo\PowerLogic\CorpLogi	<u>A</u> dd	OK
. teorporateaemo tytowogie teorpyteweir	Re <u>m</u> ove	Cancel
	Up	
	<u>D</u> own	<u>H</u> elp

Add - 允许添加新的库

Remove - 允许删除库

Up/Down - 允许你改变列表中库的搜索次序

Read Only- 仅有对库的只读权限Shared- 允许多个用户共享库的操作Allow Search- 允许对库的搜索

注意: PowerPCB支持多达 30 个库文件

搜索元件库

• 使用下拉菜单箭头指向需要搜索的库

使用过滤器(Filter),仅仅搜索你感兴趣的内容,以便节约时间

在搜索中使用通配符

例如: 74*, Res*, Cap*

WINNET 上海银利电子

Library:	
gic\CorpLogicLibrary\CorpLogic	•
(All Libraries)	
gic/CorpLogicLibrary/CorpLogic	
ogic\CorpViewLibrary\Viewcorporate	

- 选择你希望搜索的库
- 选择 Part Type、PCB Decal、 Logic Decal 和 Lines

搜索元件库

- 在元件库管理(Library Manager)对 话框中的元件类型(Part Type)部分 搜索得到结果
- 如果元件位于多于一个以上的元件库,它将被搜索到的是第一个元件库

•

Part Types	
74AC160	
74AC74	
74AS160	
74HC00	
74HC174	
74HC192	

- 一旦你选择了一个元件类型(Part Type)后,它的PCB封装(decal)将 显示出来
- 你可以扫描整个与之匹配的内容
 你也能够使用图形方式辅助你
 选择你希望的元件
- 显示的封装(decal)并不能被编辑
 ,除非搜索完成后,使用封装
 (decal)图标选中

74AS160

元件信息对话框 (Electrical)

- 显示有关元件的详细信息
- 显示缺省的参考指示符(Ref Des)的前缀
- 允许进行元件系列定义
- 允许字母数字(Alpha Numeric)管脚定义

•

•

- 如果是连接器(Connector), 则显示
- 允许ECO注册(Registration)

元件类型(Part Type)信息

Name

Cancel

Swap

Save As.

Help

Seq. Pin Type

ΟK

Unused Pins

Add >>

PCB 封装(DECAL)

- 分配PCB Decal 到 Part Type
- 能够在库内进行搜索
- 通过管脚Pins和过滤器 (Filter)搜索
- 能够分配多达 16 个Decals _
- 能够预览选择的内容
- 门(GATES)
 - 允许分配原理图符号
 - 允许分配每一个多达4 个符号
 - 允许定义门(Gate)交换和 管脚(Pin)交换信息(0表 示不允许交换)
 - 分配管脚类型(Pin Type)

元件类型(Part Type)信息

Part Information for Part - UNNAMED Image: Compact of the second sec	 信号管脚(SIGPIN) 设置标准信号和宽度 定义用户定义的信号名 显示未使用的管脚(Unused Pin)列表
OK Cancel Save As Help Part Information for Part - UNNAMED General PCB Decals Gates Signal Pins Attributes Alphanumeric Pins Connector Beset	• 属性(ATTRIBUTE)
Attribute Value Geometry:Height 40mits	 每一个元件的用户定义 例如: 值、制造商和元件高度等
Edit Add Delete Browse Lib. Attr.	 通过BOM能够提取的属性 能够浏览库Browse Lib EDUCATIONAL SERVICES GROUP

元件类型(Part Type)信息

• 字母管脚(Alpha-Pins)

- 能够是字母管脚或数
 字管脚,或两者都是
- 丁目脚, 以附有即A
- 能够改变管脚次序
- 能够删除管脚

例如: **DIP14**脚仅仅 1、6、7和14 作为物理的管脚

- 使用封装编辑器(Decal Editor)建立 PCB封装(Decals)
- 元件库管理器(Library Manager)或 在设计中通过选择元件,然后按鼠 标右键并选择 Edit Decal.
- 如果你打开元件库管理器(Library Manager),你将能够选择元件库 ,选择封装(Decals)图标,然后选 择编辑(Edit)或新建(New)
- 如果你编辑在设计已经存在的封装 (Decals),选择一个元件,然后按 鼠标右键,选择 Edit Decal。这将 仅仅更新设计中的这个封装 (Decals)
- 如果你希望从头开始,你能够选择 Tools/ Decal Editor

对于我们这些讨论,我 们假设是在工具菜单下

WINNET 上海银利电子

WINNET 上海银利电子 EDUCATIONAL SERVICES GROUP

元件封装(Part Decal)的绘图(Drafting)图标 😍 🌌 🌽 🖉 🎆 参数(Preferences) 选择 添加端点(Terminal) 新的标号(Label) 2D线(line) 向导(Wizard) 字符(Text) 从库内得到(From Library) 铜(Copper) 禁止区(Keepout) 切割(Cutout) Select-在封装(Decal)选择内容 ٠ **Terminal**-允许你在封装(Decal)中放置焊盘(pad) ٠ 2d line-允许你在封装(Decal) 中添加绘图数据内容 ٠ Text-允许你添加字符到封装(Decal)中 ٠ Copper-允许你用户定义焊盘和特别的管脚数据 ٠ Preferences-允许你设置生成封装(Decal)的环境参数 ٠ Add new Label-允许你添加新的元件编号 ٠ Wizard-允许你使用对话框方式建立元件 ٠ From Library-允许调出用户保存的形状和字符 • Keepout-允许你定义各种禁止区域 Cutouts- 允许你定义各种贴铜和覆铜的切割区域 EDUCATIONAL SERVICES GROUP WINNET PADS 上海银利电子

建立一个封装 (Decal)的外形(Outline)

- 为了建立一个封装(Decal)的外形,选择 Outline,然后按鼠标右键选择整个外框 (矩形、圆、不封闭图形和多边形)
- 你能够通过采用Search (S) 直接命令,产生你需要的形状的 拐角位置。例如: S 1000 2000
- 为了添加一个极性符号字符管脚(Pin)标识符号,选择 Add Text 图标,在对话框中输入字符串 (Text String),以及 X/Y坐标 (如果你知道的话),以及高度(Height)和笔划宽度 (Width),以及层(Layer)等,如果需要的话,设置调整 (Justification),然后按OK
- 为了建立一个具有铜皮的管脚(pin),选择铜皮(Copper)图标,然后选择形状类型(shape type),然后绘制一个铜皮,然后选择形状外框,再按鼠标右键选择(Associate),选择你希望连接的端点。
- ,有一个图标设置特别的技术规范,参数(Preference)对话框 中内容将定义在建立封装(decal)许多缺省的参数

WINNET

上海银利电子

添加端点(Terminals)

- Padstack信息和封装 (decal)一起保存
- 如果你选择 Add Terminal图标,每点击 一次鼠标则添加一个新的端点(terminal)
- 管脚(Pin)编号当添加焊盘时自动增加
- 对于一个被选择的管脚(pin),你能够使用 鼠标右键然后选择 Step and Repeat命令
 - 。这个对话框将允许你定义怎样添加焊盘
 - 、方向如何以及间距,并且编号自动增加
- 你还能够定义极坐标方式和放射式方式的 位置放置
- 你可以使用微软的切割(Cut (CNTRL C)) 命令和粘贴(Paste (CNTRL V))重复放置 端点。选择 Edit/Cut 或 Paste 下拉菜单得 到同样的结果
- 为了重命名端点(terminals)选择第一个端点(terminal),然后按鼠标右键,并且选择Renumber Terminals,选择管脚(pins)并重命名,或按 Shift 键,然后选择整个区域

修改Padstacks

- 为了改变每一层中管脚(pins)的信息,选择 Add按钮,然后 选择层(layer),再改正焊盘数据
- 为了编辑直径或钻孔尺寸,直接在相应的位置处修改即可
- **王** 注意: 25层(Layer 25)是用于平面层生成焊盘的!

软件复习

- 元件库的结构 / 管理
 - 库的列表
 - 库的搜索
- 元件类型(Part Type)数据
- 元件封装(Part Decal)数据
 - 添加端点(Terminal)
 - 重复和步长(Step and Repeat)
 - 重新编号(Renumbering)
- 修改Padstacks

练习

#1-建立一个新的库

- #2-建立一个电阻(Resistor)
- #3-建立一个边连接器(Edge Connector)

练习位于教材 Pg 3(14-18)

使用封装(Decal)建立向导(Wizard)

Decal Horjzontal Pins: Vertical Pins: Center Pin 1 Pin Numbering Clockwise CCW Pin 1 Side Center Cockwise CCW Center Cockwise Center Ce	Pins Width: 24 * Length: 124 * Shape C Rectangle © Qval Pin Pitch: 50 * Row Pitch Horizontal: 2825 * Vertical: 2825 * C Center to Center C Inner Edge to Edge © Outer Edge to Edge	View from Bottom Sid	
Vert. Size: 2450	C Mils C Metric C I	Inches Default	=

- 典型的操作是填写表格中的数据,将得到正确的图形
- PowerPCB 自动地随着编辑的数据更新
- 能够使用 Setup/Preference/Global 表格设置基本单位
- 你能够使用6种不同类型的封装(decal)图形方式
- 通过向导建立的封装(decal)同样可以修改
- 预览功能让你查看到生成的封装(decal) 实际图形

第四章

CHAPTER 4 - DRAFTING

CHAPTER 4 - DRAFTING	1
DRAFTING	2
DRAFTING PREFERENCES	3
2D-LINES	4
EXERCISE #1 CREATE BOARD OUTLINE	5
COMPONENT KEEPOUTS	6
ADDING FREE TEXT	6
AUT OD IMENSIONIN G	7
PREFERENCES	7
EXERCISE #2 - DIMENSION BOARD OUTLINE	0

上海银利电子

参数(Preferences)

添加标号(Label)

自动分隔(Separator)

显示(Hatch)

平面层切割区域(Plane Area Cut out)

平面层区域(Plane Area)

从库内得到(From Library)

绘图参数(Drafting Preference)

N Preferences			_ 🗆 ×
Global De Teardrops	sign Routing Drafting	Thermals Auto D Grids Split/M	imensioning
Text <u>W</u> idth: Height: Hatch ⊆irectio © 0i © 0i © 0i © 0i © 0i © 0i © 0i	Default Width: Board Component Top: Bottom: 10 100 100 ormal o Hatch se Through in thogonal iagonal erse for Keepout	Height Restriction	
	OK Ca	incel Apply	<u>H</u> elp

Setup/Preferences/Drafting

- 在这里定义参考指示符(Ref Des)、字符(Text)、线 (lines)和覆铜(Copper Pour)的特性
- 为了改变某项的信息,将光标放在上面,然后输入
 参数或删除已经存在的内容或数值等
- 这个对话框在完成修改后直接按Apply,将一直保 持打开状态,直到按OK。

添加二维线(2D-Lines)

Complete Add Corner Del Corner Add Arc	<dbl_click> <click> Back</click></dbl_click>
Width	{W <nn>}</nn>
✓ Polygon Circle Rectangle Path	(HP) (HC) (HR) (HH)
Orthogonal ✓ Diagonal Any Angle	(AO) (AD) (AA)
Cancel	Esc

由多边组成的封闭的形状
围绕中心点组成的圆
绘制矩形
绘制任意不封闭的形状

注意:绘制所有图形时,双击鼠标左键完成操作

软件复习

- 复习各类图标 •
- 复习各种形状选择 •
- 绘制一个板子外框 •
- 添加切割(Cutouts)区域 •

上海银利电子

练习

#1-建立一个板子外框(Board Outline)

练习位于教材 Pg 4-5

绘图(Drafting)项目内容(Items)

- 禁止区(Keepouts)定义数 据不能放置在其中的区 域
- 禁止区(Keepouts)在布线 (routing)和布局(Placing) 期间起作用

添加任意字符 (Text)

- 任意字符(text)不具有任何 电气特性,并且放置在非电 气层 (non-electrical layer)上
- 字符(text)如果放置在电气 层(Electrical layer)上,将进 行设计中与其它电气数据的 安全间距检查

绘图(Drafting)内容

- 为了添加字符(text)到设计中,在Text 区域输入字符串
- 输入需要的字符高度(Height)和笔划 宽度(Width)
- 输入字符(text)希望出现的层(Layer)
- 指定字符(text) 的调整(Justification)方式
- 按 OK

为了修改字符(Text)

- 使得选择箭头有效
- 选择一个字符串,然后选择 Query/Modify 图标

自动尺寸标注(Autodimensioning)

参数(Preferences)

N Preferences				_ 🗆 ×
Teardrops Global De	Drafting sign Routing	Grids Thermals	Split/Mixed	d Plane ensioning
Alignme	Alignmeni General S Alignmeni Text Lir	t and Arrow 💽 Settings and Arrows		
Arrows-	→ 1111 Ar Ar p: 30 I z Ljr	row Length: 1 row Size: 5 ail Length: 5 ne Width: 1	100 50 50	
Pre <u>v</u> iew T Horizonta	ype:	00Mils — 🕞		
	ОКС	Cancel	Apply	Help

- 直接编辑方式有效
- 能够修改箭头参数
- 能够设置扩展的偏置(offset)
- 能够设置字符(Text)的高度(Height)
- 能够设置字符(Text)的前缀(Prefix)
- 能够定义标注的层

General Settings-设置放置的层的信息

Alignment Arrow-设置箭头的方式参数

Text-控制位置和高度

- Snap to Corner Snap to Midpoint Snap to Any Point Snap to Center Snap to Circle/Arc Snap to Intersection Snap to Quadrant Do Not Snap
- ✓ Use Centerline Use Inner Edge Use Outer Edge
- Baseline Continue Cancel Esc

- Midpoint-捕获到线段或弧线的中间点Any Point-捕获到任意选择的点
- Center-捕获到圆、弧或焊盘的中心点
- Circle/Arc-捕获到圆或弧线的最靠近的可选择点
- Intersection-捕获到目标相遇的点
- Quadrant-最靠近的直角点(0、90、180或270)
- Do Not Snap-将不捕获,任意选择点

自动尺寸标注(Autodimensioning)

参数设置

Snap to Corner Snap to Midpoint Snap to Any Point Snap to Center Snap to Circle/Arc Snap to Intersection Snap to Quadrant Do Not Snap

✓ Use Centerline Use Inner Edge Use Outer Edge

Baseline Continue Cancel Esc

- Use Centerline-从目标的中心测量
- Inner Edge-从最靠近的边到第二处测量
- Outer Edge-从最远的边到第二处测量
- Baseline-使用基于基准线(Baseline)测量

软件复习

- 禁止区(Keepouts)复习
- 添加字符(Text)
- 自动尺寸标注 (Autodimensioning)
 - 参数(Preference)
 - 工具盒(Toolbox)

练习

#2-板子外框(Board Outline)的测量

练习位于教材 Pg 4-9

第五章

CHAPTER 5 - DESIGN PREPARATION

THE RULES HIERARCHY	2
DESIGN RULES MAIN DIALOG	3
DEFAULT RULES	3
CLEARANCE MATRIX	4
ROUTING RULES	5
RULE CATEGORIES	7
NON-DEFAULT MARKERS	7
EXTENDED DESIGN RULE SET	9
USING EXTENDED DESIGN RULES	9
CONDITIONAL RULE SETS	10
RULES REPORTS	11
LAYER SETUP	12
LAYER DIRECTION	13

第五章

DEFINING LAYER TYPE	13
LAYER NAME	13
LAYER TYPE	14
COMPONENT LAYERS	14
ROUTING LAYERS	14
PLANE LAVERS	14
CAM PLANE	15
SPLITAMINED	15
LAVER THICKNESS	15
ADDING ELECTRICAL LAVERS	16
REASSIGNING LAVERS	16
EXERCISE #1 – SETUP LAYER INFORMATION	17
EXERCISE #2 – SETTING UP ASSOCIATED LAYERS	18
DESIGN PREPARATION CHECKLIST	19

WINNET 上海银利电子

规则的层次

- 有几种方式可以设置规则:
 - 1) 从下拉(Pull Down)菜单
 - 2) 在PCB板上
 - 3) 在原理图中

设计规则(Design Rules)

- 当没有其它任何规则指定时,服从缺省的规则(Default Rules)
- 使用扩展规则(Extended Rules)必须购买扩展规则集(Extended Rules Set)选项

WINNET 上海银利电子

•

安全间距(Clearance)设置阵列

- Trace Width 定义网络宽度允许 • 的范围
- Clearance 定义设计各个目标之 • 间单独的安全间距值
- Same Net 定义用于制造规则中 • 的值
- Other 定义Drill to Drill 和 Body • to Body 间距规则
- 为了设置全部的安全间距值, • 你可以选择一行的左边按钮或 一列的上面按钮,或者左上角 的按钮,设置整行、整列或全 部值.
 - 通过Tools/Verify进行检查

布线规则(Routing Rules)

- 为了设置布线规则,选择
 Setup/Design Rules/Default
 /Routing.
- 为了使用层次化的规则结构,设置各种类型的规则(网络(net)、类(class)等)

LENTH MINIMIZATION

- Length Minimization 控制在两个 员脚之间的连线(connection)
- None-没有长度最短化约束
- Horizontal-约束横向最短
- Vertical-约束纵向最短
- Serial Source-以串行方式放置多 个源管脚 (ECL)
- Parallel Source-以并行方式放置 多个源管脚
- Mid-Drive-以指定的网络顺序最 短化和组织连线(connection)

布线规则(Routing Rules)

 Routing Options-控制方式和交互 布线

ROUTING OPTIONS

- Copper Sharing-布线允许连接到铜 皮上
- Auto Route-允许布线到一个已经 布的连线(connection)
- Allow Ripup-允许布线和重新布线
- Allow Shove Protected-允许交互布 线时推挤被固定或保护的网络
- Priority-设置自动布线时网络布线的优先级
- Available layers-显示设计中有效的层
- Selected Layers-选择希望爸布线的 层
- Available Vias-设计中有效的过孔
- Selected Vias-布线时使用的过孔

规则种类

- 安全间距规则(Clearance Rules) = 设置设计中目标之间最小的 空间距离
 - 布线规则(Routing Rules) = 设置过孔类型、长度最短化
 类型、和希望布线的PCB层
- 高速电路规则(HiSpeed Rule) = 设置高级的规则,如平行 (Parallelism)、延时(Delay)、电容(Capacitance)和阻抗 (Impedance)值
 - 这些规则能够在原理图中设置,或者在PCB中设置反向传送到 原理图中

有规则(Non-Default)标记

- 具有标记的网络可以同没有规则的网络区分开来
- 当网络被指定了各种类型的规则后, 具有C、R或H (Clearance、Routing 和 HiSpeed)标记加以区分

建立网络规则(Net Rule)

📉 Net Rules			×	
<u>N</u> ets:				
+5V (C) DRVR_1			<u>C</u> lose	
GND (C)			Help	
TRAIN_2	Clearance Routing HiSpeed	l Report		
\$\$\$3717 \$\$\$3719		,	Default	
\$\$\$3729 \$\$\$2725				
19999333	Selected: TRAIN_1			
□ <u>S</u> how Nets with Rules				

Clearance Rules: TRAIN	1					×
Tra	ice <u>W</u> idth	Minimum 2	Recomr 13	mended N	faximum	Cancel
Same <u>N</u> et	Clearance					
SMD to Via: SMD to Cm.:	Aļ	<u>T</u> race	∐ia	<u>P</u> ad	<u>S</u> MD	<u>De</u> lete
12 12	Trace	12				<u>H</u> elp
Via to Via: Pad to Crn.:	Vja	12	12			
12 12	P <u>a</u> d	12	12	12		
	S <u>M</u> D	12	12	12	12	
- Other	<u>C</u> opper	12	12	12	12	
	Te <u>x</u> t	12	12	12	12	+
Drill to Drill: Body to Body:	<u>B</u> oard	12	12	12	12	_ <u>+</u> _
12 12	<u>D</u> rill	12	12	12	12	

为了建立一个网络规则(Net Rule),选 择Setup/Design Rule.

- 选择 Net Rule 图标
- 选择所需要的网络
- 选择规则(Rules)的类型(安全间距 (Clearance)、布线(Routing)或高速电 路(Hispeed))
- 输入设计所需要的值
- 按OK, 然后选择Close 完成操作
- 还能够选择一个网络,然后按鼠标右键,选择**Show Rules**

扩展规则集(Extended Rule Set)

- 由类规则(Class Rules)、条件规则(Conditional Rules)和 不同管脚对(Differential Pairs)组成
- 类规则(Class Rules) 允许你成组地定义网络规则
- 条件规则(Conditional Rules)允许你设置基于任何规则 之上的特别规则
 - 例如:网络A具有 10 mil 的安全间距(clearance)规则定义,网络B具有 15 mil 的安全间距(clearance)规则定义,但是可以定义网络A和之间具有 50 mils 安全间距(clearance)
- 不同管脚对(Differential Pairs) 指定几个网络或管脚对 之间的长度和距离规则

扩展规则集(Extended Rule Set)的使用

- 扩展规则(Extended Rules)能够使 用于:
 - 单个的网络、所有的网络甚至于作 为类(Class)的网络
 - 定义层的规则(Layer Rules)
 - 例如: 网络 A 定义了缺省的 12 mil 线宽, 但是在第二4层上必须缩小到 8 mils 线宽

WINNET 上海银利电子

条件规则(Conditional Rules)

- 你必须定义源目标(Source Object) 和相对目标(Against Object)
- 允许设置层(Layer)作为相对目标^{*}
- 选择安全间距(Clearance)
- 然后选择Create按钮,你将看到出现一个条件规则
- 选择Matrix,可以设置你的安全一 间距值

规则报告

- 建立所有或部分网络的文本报告 •
- 如果主规则对话框有效,则所有 • 被设置的网络都输出
- 如果选择规则类型中的一个或几 • 个,则仅仅输出这一部分
- 选择Net 或 Class 将输出这些网络 • 或类

💦 Rules Report		×
Rule Types		1
		Cancel
Clearance Routing	HSL Diff. Pairs	
Pin Pairs	Groups	
All <u>P</u> in Pairs Pin Pair List:	Groups Group List:	Default Rules
J1.1-U4.2 U4.3-J1.6 U4.10-U5.11 U2.7-U5.10 D6 K-D5 K ▼ N <u>e</u> t: (All connecti		Output
Nets All Nets	Classes	
Net List: +5V DRVR_1 DRVR_2 GND TRAIN_1 TRAIN_2 \$\$\$3717	Class List:	

上海银利电子

层(Layer)的设置

- 能够设置层的名称
- 能够设置层的类型
- 能够设置层的分部 (如介电常数(dielectric)和厚度(thickness))
- 设置设计中层的数量
- 定义 PCB 特性

🖹 Layers Setup	×
Lev. Type Dir. Name	
1 CM H TOP	OK
3 PL H +5v Layer 3 4 CM V BOTTOM 5 GN LAYER_5	Cancel
6 GN LAYER_6 7 GN LAYER_7 8 GN LAYER_8	<u>H</u> elp
 Name: Gnd Layer 2	
Electrical Layer Type	
Component © <u>R</u> outing	
 Plane Type Routing Direction	
No Plane O Horizontal O CAM Plane O Vertical	
C Split/Mixed C Any	
Electrical Layers	Assign Nets
Count: 4 Increase <u>R</u> eassign	<u>T</u> hickness

层的<u>方向(Layer Direction)</u>

层的类型(Layer Types)

- Layer Direction 告诉布线器布线的方向
- 层的方向(Layer directions)典型的设置是一层一层交错的
- 为了用户定义层的方向,选择一个层的名称,然后设置方向
- 层的2种类型
 - 电层(Electrical)和非电层(Non Electrical)
 - 电层(Electrical) 上有导线和铜皮
 - 非电层(Non Electrical) 通常用于生成文档资料等信息
- 电层(Electrical Layers) 必须是连续的和导通的
- 它们能够与元件(Component)、布局(Planes)和布线层(Routing Layers)相结合
- 非电层(Non Electrical Layers)通常用于丝印(Silkscreen)、粘贴 (Paste Mask)
 和阻焊(Solder Mask) 等等
- 层的名称(Layer Names)能够指定到各个层上,不管这些层是 电层(Electrical Layers)还是文档资料层(documentation layers)
- 建议最好设置层的名称与各个层的类型和属性有点关联 WINNET
- 层的名称Layer Names 这些层是 ion layers) 关联 EDUCATIONAL SERVICES GROUP 论论

- 仅仅顶层(Top Layers)和底层(Bottom Layers)能够被设置作为元件层(Component Layers)
- 有一些文档资料层(documentation layers)已经被设置为 与电层 (electrical layers)有关,例如,顶层(Top)和底层 (Bottom)
 - 这通常是用于类似丝印顶层(Silkscreen Top)或丝 印底层(Silkscreen Bottom)、装配顶层(Assembly Top)或装配底层(Assembly Bottom)
- 布线仅仅能够在布线层(Routing layers) 或元件层 (Component layers)上进行
- 平面层(Plane Layers)需要有类似电源(power)或地(gnd)
 网络分配到它上面,以便它们能够生成热焊盘(thermal)
- 我们支持标准的平面层(Plane layer)和分隔(split)平面层,以及这两种混合类型 覆铜(copper poured)方式
- 当定义了一个平面层后,你必须分配一个网络到上面
- 这些定义能够标识热焊盘(thermals)和其它通孔焊盘

元件层(Component Layers)

> 布线层(Routing Layers)

平面层(Plane Layers)

CAM平面层(Plane Layers)

- 我们在元件库内定义封装(decals)时,这个典型的平面层(plane layer) 是25层 (layer_25)
- 这层焊盘数据将比标准层的数据大(例如20 mils)
- CAM输出将检查网络是否分配到该平面层,如果是将自动建立热焊盘 (thermals)

分隔混合(Split Mixed)

- Split/Mixed 平面层(planes)建立具有覆铜类型(copper pour type)数据,分隔 线能够通过 Create Plane Area 图标建立
- 你能够在这种类型的层上布线

Layer Thickness		
Layers Layer List:		ОК
TOP Substrate	Substrate/Prepreg	Cancel
Gnd Layer 2 Substrate		<u>H</u> elp
+5v Layer 3 Substrate BOTTOM	Djelectric:	
50110M	Layer Type: Routing	
	Copper Thickness: 1	

- Layer thickness是为了定义各层各种介质的厚度的
- 在这里定义的信息将用于高速电路设计(High Speed)检查和信号完整性/电磁兼容性分析
- 这个信息将能够传递到其它设计分析工具 (Hyperlynx)
- 铜(Copper)的厚度单位是 盎司(Ounces)
- 厚度(Thickness)和介电常数(Dielectric constants)能够用于设置 忖底(Substrate)或半固化片(Prepreg)层

层的厚度(Layer Thickness)

定义层的类型(Layer Type)和名称(Name)

- 通过选择 **Increase** 按钮增加层数 ,你可以指定新的最大层对应一 经存在的层关系。
- 为了重新分配已经存在的层,选 择**Reassign**按钮,改变适当的层 的位置。
- 当你重新设置了层后,你必须检 查两个层是否有冲突,然后按 OK 关闭对话框。
- 注意:你不能通过这个按钮减少
 层

添加电气层(Electrical Layers)

重新分配电气层(Electrical Layers)

软件复习

- 设计规则(Design Rule)主对话框
- 缺省的规则(Default Rules)
 - 安全间距规则(Clearance Rules)
 - 布线规则(Routing Rules)
 - 高速电路规则(Highspeed)
- 网络规则(Net Rules)
- 扩展规则(Extended Rules)
- 条件规则(Conditional Rules)
- 层的设置(Layer Setup)
 - 电层(Electrical)
 - 平面层(Plane)
 - 添加层(Layers)

练习

#1-设置层的信息 #2-分配文档层

练习位于教材 Pg 5(17-18)

第六章

CHAPTER 6 -- PLACEMENT

PLACEMENT	
SINGLE COMPONENT PLACEMENT FUNCTIONS	
GROUP COMPONENT PLACEMENT FUNCTIONS	
SPECIAL GROUP COMMANDS	
SELECT USING FIND	
ALIGN	
NUD GING	
NUDGE WARN MODE	
NUDGE AUTO MODE	
GLUING PARTS	
EXERCISE #1 SAVE TO LIBRARY	
EXERCISE #2 FIND BY	
EXERCISE #3 - ALIGNING COMPONENTS	
EXERCISE #4 - BOARD CREATION AND PLACEMENT	

WINNET 上海银利电子

- 为了移动一个元件,选择Placement 图标 🗮,它位于Design 方式下 💥
- 同样你也可以选择一个元件,按鼠标右键,选择 Move
- 当你选择一个元件,如果你按鼠标右键,你将得到一些操作选项
- 有一些选项,如Flip Side、Nudge、Save to Library 几乎一直出现
- 为了查找一个元件进行布局,可以直接打入直接命令S(搜索).
- 为了选择并移动,使用同样的直接命令位于Design图标下/Move 命令。然 后输入 SS (ref des),这个元件将随着光标移动

- 成组(Group)操作同样可以应用于多个元件
- 你可以使用鼠标左键,选择几个元件,然后按鼠标右键,选择移动功能
- Move、Rotate 90、Spin、Flip Side 和Save To Library 对于多个元件被选 择进行操作是必须的

特别的组(Group)操作命令

- Rotate Group 90- 能够定义一个中心点旋转
- Flip Group-能够定义一个中心点翻转
- Align-能够以一个元件为基准行列对齐

🖹 Find			_ 🗆 🗵
- Find By-	Ref.Des. Prefix	Ref. Designators	Selected Items
Ref. Designator	C		
A <u>c</u> tion: Select	R U		
Value:			
Add to Selection			Ľ.
ОК Аррју	Abort	<u>F</u> ilter Cance	l <u>H</u> elp

- 能够通过 Find By 功能用于选择基于Ref **Des、Part Type、Decal**的内容
- 建议使用选择箭头(Selection Arrow),并 进入Edit/Find 对话框
- Net Name, Line Width, Via Type, Isolated Pour 是能够帮助你在查找(Find) 对话框中的另外一些功能

使用 Edit/Find

使用 Find

- Rotate 90
- Flip Side
- Move Sequential

上海银利电子

行列对齐后

推挤(Nudging)

- DRC 检查
- 能够自动推挤(Automatically Nudge)后手工推挤(Manually Nudged)
- 使用状态菜单(Status Menu)有几种方式可以选择
 - Nudge Auto
 - Nudge Warn
 - Nudge Off
- 使用Clearance Same中定义的相同网络中的Body to Body进行设计规则检查(DRC)

Nudge Warn Mode

- 当一个放置元件(Part) 有冲 突时高亮
- 一个对话框将出现,提示你 可选择的操作
- 元件将基于你选择的操作方 式移动

固定元件(Glued Parts)

- 元件(Parts)能够被上胶水固定而 不被推挤
- 固定(Glue)操作能够通过 使用 Query/Modify完成

Nudge Auto Mode

- 自动推挤元件
- 软件决定推挤的方向
- 密集的区域也许会引起布线
 失败

WINNET

上海银利电子

软件复习

- 放置单个元件
- 放置一组元件
- 使用Find对话框选择
- 行列对齐
- 推挤
- 固定元件

练习

#1-保存到库内 #2 - Find By #3-行列对齐元件 #4-建立板子和布局

练习位于教材 Pg 6(7-10)

第七章

CHAPTER 7 -- ROUTING

ROUTING
ROUTE EDITOR
SETTING/CHANGING TRACE WID THS
VIAS
PIN TO PIN AUTOROUTER
DYNAMIC ROUTE EDITOR
BUS ROUTE EDITOR
SMOOTH
SKETCH
PAD ENTRY

WINNET 上海银利电子

第七章

EDITING TOOLS
ADD CORNER IN VERB MODE
SPLIT
STRETCH
TEST-POINT GENERATION
EXERCISE #1 - ROUTE EDITOR
EXERCISE #2 - PIN TO PIN AUTOROUTER
EXERCISE #3 - SMOOTH
EXERCISE #4 - DYNAMIC ROUTE EDITOR
EXERCISE #5 - SKETCH

布线(Route)需求

- 4 种方式可以交互布线
 - 使用布线编辑器(Route Editor)
 - 动态布线编辑器(Dynamic Route Editor)
 - 管脚到管脚(Pin to Pin)自动布线
 - 总线布线(Bus Router)

	5
添加拐角 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
分割 /	
Route Editor	
Dynamic Route Editor	
草图法布线	
Autoroute	
Buss Router	
添加跳线	
添加测试点	
	E

布线(Routing)

布线(Route)需求

- **Route Editor** 使用于*手工布线*,如果Online DRC 打开, 它将起作用.
- **Dynamic Route Editor** *自动交互布线器* 它将允许你按照 光标的移动进行布线,采用推挤算法(Push-N-Shove algorithms),布线期间允许导线和过孔的推挤, Online DRC 必须打开才能使图标有效
- Pin to Pin Autorouter- 尝试导线 在管脚对之间自动布线、 单层布线。使用 当前的设计栅格布线。Online DRC 开关 必须打开
- Bus Router-用于多于一个网络的同时布线。(例如:存储器类型的线、数据总线等) Online DRC 必须在 PREVENT 方式

布线编辑器(Route Editor)

- 使用布线编辑器(Route Editor)图标
 - 放置光标在连线(connection)上,然后按鼠标左键
 - 为了添加一个拐角,按鼠标左键
 - 为了完成一个导线,连接到焊盘或者双击鼠标左键
 - 一旦完成后连线(connection) 将离开光标

设置和改变线宽(Widths)

- 布线之前设置宽度(Width)
 - 可以通过原理图设置
- 在设计规则(Design Rules)中设置
 - 使用Setup/Design Rule/Routing 对话框
- 使用直接命令"W"并输入值,或布线期间设置
 - 选择一个连线 (开始布线) 输入W (空格) 10 改变宽度为 10 mil
- 使用Query/Modify
 - 选择布完线的线段,选择Query/Modify,然后改变值
 - 同样可以使用Find 以及Width 和 Query/Modify 选择指定的宽度 ,并输入新的宽度
- 注意: 改变后新的宽度必须在设计规则(Design Rules)中定义 的宽度最小Min 和最大Max 值之间

上海银利电子

过孔(VIAS)

- Vias Sizes 和 Shapes 能够使用 Setup/Padstack添加
 - 选择Setup/Padstacks, 然后选择 Via, 选择 Via type (或ADD) 然后修 改已经存在的焊盘
- 为了对导线添加(Add)一个过孔(Via)
 - 开始布线,按鼠标右键,选择Add Via
 - 使用 Shift+鼠标左键在最后一个拐角处添加一个过孔
 - 能够使用直接命令"L"改变层来自动添加一个过孔
 - 为了结束导线而没有过孔,可以选择Cntrl+鼠标左键
- 为了改变一个过孔
 - 将过滤器(Filter) 设置为 Anything (或 Via)
 - 选择一个过孔,按鼠标右键,选择Query/Modify改变过孔的名字到希望的过孔名称

为了设置有效的过孔(Via)

- 打入直接命令"V"打开 Via 对话框
- 打入直接命令 "VA"为 Automatic Via 方式
- 打入直接命令"VT"为 Through Via 方式
- 打入直接命令"VP"为 Partial Via 方式

选择过孔(Vias)

W Vias	_ 🗆 ×
Via Mode C <u>A</u> utomatic	ОК
C Partial C Through	Аррју
⊻ia List:	Cancel
STANDARDVIA	
	<u>H</u> elp

- Automatic Via Mode- 允许系统当层改变时选择过孔
- Through Via Mode- 使得所有通孔过孔有效
- Partial Via Mode-使得所有部分导通孔过孔有效

选择 Pin to Pin Autorouter图标

- 将光标放置在希望布线的连线(connection)
- 使用鼠标左键
 - 注意: Online DRC 必须打开,仅仅对于单层工作,使用当前的栅格

Dynamic Route Edit

Pin to Pin Autorouter

- 选择 Dynamic Route Editor图标
- 将光标放置在希望布线的连线(connection)
- 拖动光标进行布线
 - 注意: dynamic route 程序将移动导线和过孔

• 选择 Bus Route Editor 图标

Bus Route Editor

- 按鼠标右键,然后选择 "Pins, Vias, Tacks"
- 在管脚上拖动光标
- 使用**Backspace** 删除前一个线段
- Shift+鼠标左键添加过孔
- 选择Cntrl Tab切换过孔类型
- 建议使用小的栅格(Grid)
- 使用DRE technology 并满足设计规则(Design Rules)约束

WINNET 上海银利电子

平滑(Smooth)

平滑前 注意: 直角拐角

平滑后 注意: 对角拐角

- 平滑(Smooth)将删除不必要的拐角 •
- 在 Corner Mode 中设置拐角 •
- 满足设计规则(Design Rules) •

上海银利电子

- 选择草图法(Sketch)图标 ٠
 - 2
- 选择一个需要的线段 •
- 使用手绘线定义新的路径 •
- Sketch 将自动满足设计规则(Design Rules)
- Sketch 将自动地使用Corner settings

草图法(Sketch)之后

草图法(Sketch)

Add Corner (Verb Mode) •

- 位于设计(Design)工具盒内
- 允许添加连续的拐角

Split Segments •

- 位于设计(Design)工具盒内
- 允许线段被切割,以便添加一个拐角
- 当使用它时,一个拐角被插入,并且一个 新的线段出现在光标上
- Stretch
 - 用于调整倒角(miter)的长度
 - 移动倒角(miter)的拐角 _
 - 选择一个线段,然后按鼠标右键,选择

Stretch

上海银利电子

编辑工具(Editing Tools)

 $\mathbf{\overline{x}}$

产生测试点(Test Point)

- 测试点(Testpoints)能够通过 DFT Audit添加
- DFT Audit 可以通过选择**Tools/DFT Audit**有效
- **DFT Audit** 能够验证设计是否具有所有测试点,并标识它们, 并且遵守设计规则设置
- 你可以保存并重新调用这些配置(Configuration)
- 测试点(Testpoints)在 Audit执行期间被添加 到板子边框之内
- 测试点(Testpoints) 能够被固定,以便它们不被意外的移动
 - Setup/Preference/Routing/Lock Testpoints 用于锁定测试 点(Testpoints)
- Tools/Verify Design/Testpoints 用于检查测试点(Testpoints) 作 用与ECO操作

添加测试点(Testpoints)

- 测试点(Testpoints)能够手工或自动地被添加
- 手工添加测试点(Testpoints) 是在布线期间进行的
 - 在布线期间,你可以设置End Via 方式
 为 End with Testpoint,并且按 Cntrl + 鼠标左键
 - 为了在布线后添加测试点(Testpoints),
 选择一个过孔(via)或管脚(pin),按鼠标
 右键,选择Query/Modify,从对话框中
 选择Testpoint

WINNET 上海银利电子

软件复习

- 布线(Routing)工具盒 复习
- 使用Route Editor
- 改变导线宽度(Widths)
- 使用Vias/选择Vias
- 动态自动布线器(Dynamic Autorouter)
- 总线布线(Buss Router)
- 平滑(Smooth)
- 草图法(Sketch)
- 焊盘进入(Pad Entry)
- 分割/延长(Split/Stretch)
- 测试点(Testpoints)

练习

- #1 布线编辑器(Route Editor)
- #2 管脚(Pin)到管脚(Pin)自动布线
- #3-平滑(Smooth)
- #4-动态布线编辑器(Dynamic Route Editor)
- #5 草图法(Sketch)布线

联系位于教材 Pg 7(12-14)

第八章

CHAPTER 8 -- COPPER GENERATION

COPPER
DEFINING COPPER FILL PATTERN
COPPER POUR PREFERENCES
QUERY/MODIFY COPPER SHAPE
COPPER LAVER ASSIGNMENT
CREATING FIXED COPPER
CUTOUT FOR FIXED COPPER
CREATING COPPER POUR
FL00D
HATCH
DRAWING A COPPER PLANE
PLANE LAVERS VS. POURED COPPER
SPLIT PLANES ON AN ASSIGNED PLANE LAYER
EXERCISE #1 - GENERATING AND MODIFYING FIXED COPPER
EXERCISE #2 - GENERATING COPPER POUR
EXERCISE #3 - CREATING A SPLIT PLANE

- 有几种方式可以进行贴铜皮(Copper)
 - 电源(Power)和地线(ground)平面(planes)
 - 热焊盘连接
 - 屏蔽(Shielding)
- 有两种类型
 - Fixed Copper-用于热和功率的要求、禁止区等
 - Copper Pour-用于屏蔽(shield)网络、建立平面层(plane) 区域和特别信号之间的互连

绘图(Drafting)工具盒

- 为了定义填充(显示或实体填充),你可以调整显示栅格(Hatch Grid)使用多边形缺省的宽度(Default Width)
- 为了设置缺省的宽度,打入直接命令W,
 然后输入值。你也能够使用右边的对话框
- 如果你的显示栅格(Hatch Grid)等于用于 铜皮的线宽(Line Width),其结果是实心 的(Solid)。如果显示栅格(Hatch Grid)大于 铜皮的线宽(Line Width),结果是网格状 显示
- Minimum Hatch区域控制孤岛的存在,值越大,则孤岛越少出现
- **Display Mode** 控制填充显示
- 可以有多种显示方向(Hatch Directions (Orthogonal and Diagonal))

定义铜(Copper)填充形式

正常显示

(Hatch)方式

不显示(Hatch) 方式

透明显示(See Through Hatch)方式

- 有 3 种显示视图(Hatch Views)方式 (Normal、No Hatch和 See Through)
- Normal-实体填充(Solid fill)
- No Hatch- 不填充(No fill)
- See Through-看似透明的填充(Looks through the fill)

Preference 🕈	es	
Teardrop Global	os Drafting Design Routing	Grids Split/Mixed Plane Thermals Auto Dimensioning
	Drilled Thermals Width: IS Min. Spoke: 2 ÷ Pad Shape: Round ▼ © Orthogonal © Diagonal © Elood Over © No Connect	Non-drilled Thermals Width: 10 Min. Spoke: 2 ÷ Pad Shape: Round ▼ © Orthogonal © Diagonal © Flood Over C. No Connect
		No conn <u>e</u> ct
	Routed Pad	Thermals
	🔽 Show Gener	al Plane Indicators
	🔽 Remove Vio	lating Thermal <u>S</u> pokes
	OK Can	cel App <u>i</u> y <u>H</u> elp

覆铜(Copper Pour)参数

- 在**Setup**下拉菜单中有效
- 能够设置用于钻孔焊盘(Drilled)和非钻孔焊盘(Non Drilled)焊 盘的热焊盘(Thermal)连接线的宽度(Spoke Width)
- 设置最小的热焊盘(Thermal)连接线的宽度(Spoke Width)
- 设置每个焊盘形状(Pad Shape)的热焊盘类型(Thermal Style)
- 设置对于已经焊线的焊盘(Routed Pads)产生热焊盘(Thermal)
- 设置热焊盘(Thermal)的显示指示

查询/修改(Query/Modify)铜的 形状(Copper Shape)

- 你能够改变多边形的宽度(Width)
 - 能够改变实体(Solid)到显示 (Hatch)方式
- 能够进行在那些层(Layer)上
- 网络名(Netname)分配到某个多边形上

铜(Copper)的层分配

• 铜(Copper)仅仅能够被放置在单个的层 (layers)上,它不能被放置在All Layers

- 选择铜(Copper)图标 [
- 按鼠标右键,然后选择一个形状类 型
- 按鼠标左键,开始绘制
- 为了完成,双击鼠标左键
- 设计时在封装(decal)中建立铜 (copper)需要同样的步骤
- 铜(copper) 不需要分配网络名 (netname)
- 如果布线时,布线到铜(copper),导 线可以跨过铜(copper)。当遇到铜 (copper)的边沿时,双击鼠标左键

建立铜(Copper)

Complete Add Corner Add Arc	<dbl_click> <click></click></dbl_click>
Width	{W <nn>}</nn>
∠ayer ✓ Auto Miter	(L <nn>)</nn>
Polygon	{HP}
Circle	{HC}
Rectangle	{HR}
🗸 Path	{HH}
Orthogonal	{AO}
🗸 Diagonal	{AD}
Any Angle	{AA}
Cancel	Esc

练习

#1-产生并修改贴铜(Copper)

联系位于教材 Pg 8-11

								-		
									1	
									1	
									1	
									1	
									1	
	t i									
	. / .				7					
									1	
									1	
-			-							

- 建立了铜(copper)后选择切割 (Cutout)图标
- 将光标放置在铜(copper)区域上 ,绘制一个切割(cutout)
- 然后选择整个外形,按鼠标右键,选择结合(Combine)
- 结果是铜(copper)被切割了一个 区域

铜(Copper)的切割区域(Cutouts)

覆铜(Copper Pour)

- 选择覆铜(Copper Pour)图标 🕰
- 按鼠标右键,选择形状类型 •
- 按鼠标左键, 绘制一个覆铜 (Copper Pour)多边形
- 双击鼠标左键完成
- 为了灌注(Flood)一个覆铜区域 (pour area), 选择 Tools/Pour Manager 下拉菜单, 然后选择 Flood All, 以及Start
- 你还能够选择覆铜外形(pour shape),然后按鼠标右键,选 择灌注(Flood)
- 热焊盘(Thermals) 是自动产生的 ,它基于这些焊盘的网络被分配 到需要覆铜(copper pour)的网络

建立覆铜(Copper Pour)

为了分配网络到覆铜(copper pour) ,按鼠标右键,选择Select Shape 过滤选择,选择copper pour polygon, 选择 Query/Modify, 选择希望的网络,选择 OK

上海银利电子

练习

"产生覆铜(Copper Pour)"

练习位于教材 Pg 8-12

覆铜(Copper Pour)

• 灌注(Flood)数据并不被保存在设计文件中,以 便减少设计文件的尺寸

有关灌注(Flood)和显示(Hatch)的注释

- 为了不填充铜(pour)数据,进入 Tools/Pour Manager,然后选择显示(Hatch)表格中的 Hatch All,你必须选择 Start 开始操作
- 你能够不显示焊盘/过孔的热焊盘,通过使用 Query/Modify即可。关闭Plane 区域的显示即 可
- 每一次编辑铜(Pour)的区域,必须对改变后的铜 (Pour) 重新灌注(Flood)。如果你没有这样做并 运行 Verify 你将得到一个DRC错误

平面(Planes)

- 如果指定是平面层(plane),你建立你的CAM文档时,你必须选择文档的类型为平面层(Plane)。你将以负片(negative)(也称为阴片)输出图形图像
- 如果指定是布线层(routing),当你产生CAM文档时,文档类型将是Routing,它将采用正片(positive)(也称为阳片)输出图形图像

Plane Layer 和 Poured Copper

Madd Document				×
Document <u>N</u> ame:			OK	
Gnd Plane layer 2				_
Document <u>Type:</u> Output <u>File:</u>			Cance	:
Plane 🗾 pgp02.pho			Help	1
Summary:			<u> </u>	
Plane: () Gnd Layer 2: (Pads,Vias,Copper,Line	s,Text)		<u>R</u> un	
			Set <u>L</u> aye	rs
•		•		
Customize Document	Output Dev	/ice		
<i>"</i>	8	▲		
Layers Options Assembly	Print	Pen	Photo	Drill
Preview Selections		<u>D</u> evice	Setup	

平面(Planes)

- 所见即所得
- 允许布线在希望的层上,作为平民层 (plane)对待
- 对于结合分隔平面(split plane)技术更加容易
- 对于热焊盘(thermal)和安全间距有更多的 控制方式

覆铜(Copper Pour)方式的优点

覆铜(Copper Pour)方式的缺点

- 设计文件重新加载后,每一次都需要对覆 铜(Copper Pour)重新显示(re-hatching)
- 增加数据库的大小尺寸

WINNET 上海银利电子

平面(Planes)

分隔线(Split Line)

平面(Plane) B

在一个指定的平面层 (Plane Layer)上的分隔 平面(Split Planes)

分隔平面(Split Planes)出现在当有2个以上的网络端 • 点出现在同一个平面层上

软件复习

- 贴铜皮(Copper)工具盒
- 定义铜皮填充 (栅格设置)
- 覆铜(Copper Pour)参数
- 查询/修改通皮形状
- 建立一个铜皮(Copper)
- 建立一个切割区(Cutout)
- 建立一个覆铜(Copper Pour)
- 灌注(Flooding)

练习

#1-建立一个分隔平面(Split Plane)

练习位于教材 Pg 8-14

第九章

CHAPTER 9 -- DESIGN VERIFICATION

VERIFY DESIGN TOOLS	2
CLEARANCE CHECK SETUP	3
RUNNING CHECKING	3
REPORT FILES	4
VIEWING THE ERRORS	4
ERROR SYMBOLS	5
CHECK ASCI.	5
COMPARE NETLIST	5

WINNET 上海银利电子

设计验证(Verify Design)

Verify Design	
	Clear Errors Close
	☑ <u>D</u> isable Panning <u>H</u> elp
Explanation:	Check Clearance Clearance Connectivity Con
	Errors 0

Clearance 检查所有违反定义的设计规则的情况

- Connectivity 检查是否所有的网络都已经布通了
- Plane
 检查所有平面层(plane)的连线是否已经全部连接到

 平面层(plane layers)
- High Speed 检查是否违反高速电路规则,使用于EDC
- Test Points 检查是否缺少测试点,并且是否有空间间距冲突

检查

- Net to all 检查所有网络情况
- Same Net 检查在相同的网络的情况
- Drill to Drill 检查钻孔到钻孔的情况
- Trace Width 检查导线的最宽和最细情况
- Body to Body 检查元件外框之间的安全间 距
- Nudge Outline 检查基于20层的特别形状
- Board Outline 检查板子边框的情况
 - 为了进行检查,按Start按钮
 - 在窗口内安全间距的运行情况是可见的
 - 能够在窗口中取景(Panning)显示到当前 的错误处

检查

- 执行后一个报告将出现
- View Reports 让你预览当前报告的内 容
- Location 显示各个错误的 X/Y和层
- 解释错误的类型、位置等信息
- 当你选择了一个错误后,这个错误将高亮

ERROR	LIST	REPORT	 trainroute.pcb	 Fri	Oct	01	23:13:33	1999	

Error 1 Location 186,450 Level 1 Distance between pad and track too small

Error 2 Location 586,450 Level 1 Distance between pad and track too small

WINNET 上海银利电子

PAI	T DIFFERENCES
Design	New Design
Part-type	Ref-des Part-type
NE	DIFFERENCES
Design	New Desinn
2	S16002 S160012
- }	SIG005
i ,	SIG006 SIG004
UNMATCHED I	ET PINS IN OLD DESIGN
UNMATCHED I	ET PINS IN NEW DESIGN
ATTRII	UTE DIFFERENCES
tribute Name	Old Value

检查

• 出错标记将保持直到你选择Clear Error 按钮

检查ASCII文件

- 检查ASCII能够检查设计与ASCII的比较 或ASCII和ASCII的比较
- 能够包含属性和设计规则
- 生成的 ECO 文件能够进入原理图或 PCB设计中

软件复习

- 验证对话框
- 安全间距(Clearance)检查
- 报告文件
- 查看错误
- 检查ASCII文件
- 比较网表(Compare Netlist)

-般练习

"使用Eco\Compare Netlist"

- 使用 **Trainroute.pcb**设计文件
- 选择 **ECO**图标
- 选择 **Del Connection**图标
- 删除几个连线
- 进入 Tools/Compare Netlist
- 使"Current PCB Design"被确认
- 使"New Design with Changes"被确认
- 检查 "Generate Difference Report"
- 检查 "Generate ECO file" 并分配名字
- 选择 Run
- 查看不同的文件和ECO文件内容

第十章

CHAPTER 10 -- CAM OUTPUTS/DOCUMENTATION

CAM	2
TRANSFERRING THE BATCH LIST FROM DESIGN TO DESIGN	3
CREATING A CAM SUBDIRECTORY	3
SETTING DEFAULT CAM CONFIGURATION	3
CREATING A SINGLE APERTURE LIST	3
TRANSFERRING AN APERTURE LIST FROM PERFORMWORK	3
PHOTOPLOTTING SETUP	5
PLANE LAYERS AND LAYER_25	6
EXERCISE #1: SILKSCREEN TOP	
EXERCISE #2: ROUTING LAYER	8
EXERCISE #3: SOLDER MASK BOTTOM	8
EXERCISE #4: DRILL DRAWING	8
EXERCISE #5: PLANE LAYER	9
EXERCISE #6: ASSEMBLY OPTIONS	10
REPORTS	11
REPORT GENERATION LANGUAGE	11

Define CAM Documents Close Dgcument Name: Close Route Layer 1 Add Boute Layer 4 Edit Delete Help Bun Listing Summary: Listing Routing: () BOTTOM: (Pads,Vias,Tracks,Copper,Lines,Text)	建立新的文档 编辑文档 删除文档 执行文档 文档列表 输入CAM数据 到其它设计
CAM Directory: default Aperture Report	建立Aperture报告,位于CAM 目录中

- 文档名可以包含任何标点符号
- 缺省的CAM配置保存在defaults.cam文件中
- 设备的信息保存在devicesn.dat文件中
- 所有CAM输出文件保存在Cam Directory 中 定义的目录中

- 在Cam Directory中设置,选择 下拉箭头并选择 Create
- 在出现提示后选择 OK 按钮
- 选择在列表中的所有光绘(photoplots)
- 选择Aperture Report按钮
- 输入文件名
- 将进入定义的子目录,文件名具有.REP扩展名
 - 在 PowerPCB V3中不再支持

建立CAM子目录

建立单个的 Aperture 列表

传输Aperture 列表

WINNET 上海银利电子

•

- 当**Document Type** 在 PowerPCB中被选择时,将自动地定 义包含那些内容
- 用户的 Document Types 没有任何事先定义的信息出现
- **Output Device** 设置输出格式
- Preview 让用户预览输出的内容,而不需要实际输出

N Photo Plotter Setup	×	
D-Code: D10 Add D11 Delete Augment Regenerate Shape Flashes: Discretions Lines: Same Aperture for Flashes/Lines Width: Height: Inner Diam:	OK Cancel <u>H</u> elp Ad <u>v</u> anced	
Fill Width: 10 Aperture Count: 989 V Augment on-the-fly		

- Apertures 能够自动地被添加,或者手工通过选择ADD 按钮并输入编号添加
- 使用 Delete能够删除 •
- Augment 添加到当前的列表,不改变以前定义的内容 ٠
- **Regenerate** 建立完全的列表 •
- Aperture 列表以相同的文件名保存,具有.rep 扩展名 ٠
- Advanced 菜单设置,类似RS-274X Gerber 格式,同样 ٠ 可以设置

上海银利电子

- Cam Plane-用于基于Uses oversized pads on Layer 25的焊盘。生成基于25层的平面层焊盘和 过孔
- PADS的元件库预先进行了定义
- 你也能够在CAM平面层输出时,直接定义焊盘的尺寸放大(oversize)
- 对于所有的元件添加25层(Layer 25)
- 焊盘的尺寸放大(Oversize)为15-20 mils
- 在**Setup/Layer**中定义平面层(Plane layer)
 - Assign Nets
- 在CAM输出时,选择CAM PLANE 作为绘图类型
- 修改层的选择,以便焊盘被排除在平面层之外, 并被包含在25层中
- 记住-Non Pads 数据还可以从原始的平面层中选择

平面层(Plane Layer)设置

为了建立平面层 (Plane Layer)

软件复习

- CAM 对话框
- 建立新的CAM子目录
- 建立CAM的配置
- 建立 Gerber Aperture 表
- 设置光绘机(Photoplot)
- 生成平面层(Plane Layer)
- 生产报告

练习

生成CAM输出用于:

- #1-顶层丝印(Silkscreen)
- #2-布线层(Routing Layer)
- #3-阻焊图形(Solder Mask)
- #4-钻孔绘图(Drill Drawing)
- #5-平面层(Plane Layer)
- #6-装配图(Assembly Options)

报告

选择 Files/Report即可

- 文件格式是 ASCII,并且具有 .FMT 扩展名
- 使用PADS Report Generation Language (**RGL**)格式
- 数据位于\PowerPCB 目录内
- 能够使用用户定义关键字
- 有效的关键字参考软件的在线帮助(On-line Help)章节
- 我们提供2种网标(Netlist)和2种元件列表(Partlist)报告
- 报告的输出能够输入到标准的字符编辑器中
- 根据FMT文件定义能够结合任何报告文件内容

Neports	
Path: d:\pwrv30\PowerPCB\report.rep	
Select Report <u>Files</u> for Output:	
Unused A Statistics	Add
DFT Extended test point report	<u>D</u> elete
Net List w/o pin info Net List w/pin info	Use Assembly Option
Parts List 1 Parts List 2	Name:
PowerPCB V2.0 Format Netlist PowerPCB V3.0 Format Netlist	
ОК Аррју С	ancel <u>H</u> elp

第十一章

CHAPTER 11 -- ECO

FROM POWERPCB TO THE SCHEMATIC	. 2
ECO TOOLBOX	. 3
PIN AND GATE SWAPPING	. 3
ADDING PARTS - USING THE BROWSER	. 4
FROM THE SCHEMATIC TO POWERPCB	. 4
RENAME PART COMMAND	. 4
FINAL EXAM	. 5
MY FIRST BOARD DESIGNED ON POWERPCB	. 5

- 选择 ECO图标开始工作
- 在 Eco Preference 对话框内打 开或关闭 Write Eco File
- 如果Append To file 确认框有 效,则所有最新的改变将添加 到已经存在的ECO文件中
- Write Eco file after Closing Eco Toolbox 将在你退出ECO 方式时保存更改数据
- Expand Part 和 Net Attribute
- Output only ECO Registried Parts将仅仅输出具有ECO注册 的元件

ECO Preferences	×
ECO File ✓ Write ECO file. ✓ Append to file. Filename: D:\Mydocuments\Trainingdata\trainingFiles\t Browse ✓ Write ECO file after glosing ECO toolbox. Note: This will clear undo buffer.	OK Cancel <u>H</u> elp
ECO Output Options Attribute Expansion Expand Part Attributes Expand Net Attributes Output only ECO <u>R</u> egistered Parts	

门(Gate)和管脚的交换

- 对于具有相同的ID基于管脚 (Pins)和门(Gates)进行工作
- 当交换时,进行最短化的长度连线连接
- 能够手工和自动完成

自动参考指示符重命名 (Auto Ref Des Rename)

- 具有 8 种可选的重命名的序列方式
- 能够从底部或顶部开始重命名
- 能够设置重命名排列的扫描宽度规则

使用浏览(Browse)方式添加元件

- 使用浏览(Browse)方式添加元件 (在Item 框内输入*)
- 按 Apply键 然后浏览(Browse) 希望的元件
- 为了更新值和容量,使用Query-Modify\Attribute
- 对话框还打开,便于添加多个元件
- 按右键允许你设置参考指示符(Ref Des)
- 必须首先从原理图软件中建立.ECO 文件
- 选择 File/Import, 然后指向 File Type, 然后选择 .ECO输出 ECO文件
- 任何新的元件将都位于原始设计(design origin)中
- 新的连线(New connections) 将出现未布线的网络连线
- Deleted parts and connections 将自动消失

从.SCH到.PCB

重新命名元件

- 选择 Rename Part图标,然后选择元件
- 为了重新命名具有新的前缀的整个系列元件,打入 SS 然后是参考指示符(Ref Des)前缀(这将高亮具有这种参考指示符(Ref Des)前缀的所有元件
- 选择 Rename Part图标
- 在提示输入新的前缀后,按**OK**键

软件复习

- 复习工程更改命令(ECO)工具盒
- 管脚(Pin)和门(Gate)的交换
- 自动重新编号(Auto Renumbering)
- 添加元件(Parts)
- 从原理图正向工程更改命令(ECO)
- 重新命名元件(Rename Part)

使用PowerPCB完成我的第一个设计

测验

"使用 PowerPCB完成我的第一个设计"

- 建立板子边框(Board outline)
- 散开元件 •
- 设置层(Layers)的信息
- 设置过孔(Via)信息
- 设置设计规则(Design Rules)
- 输入网表(Netlist)
- 放置元件(Parts)
- 布线(Route)设计
- 运行布通性(Verify routine)
- 建立CAM输出文档
- 对板子进行自动尺寸标注(Autodimension)

使用My1stdesign.asc作为网表 (netlist)文件

恭喜,你已经毕业了!

如果你有任何问题,请随时与我们联系:

上海银利电子有限公司

地址:上海市虹漕南路718弄1号楼10楼A座

邮编: 200233

电话: 021-54187052, 54620393 手机: 0-13901734467

传真: 021-54187052

电子邮件: webmaster@winnet.com.cn

网址: www.winnet.com.cn

