
STDF Specification V4 Page i

Main Menu

Standard Test Data Format
(STDF)

Specification

Version 4

Table of Contents

Click on any entry.

Introduction to STDF

Teradyne’s Use of the STDF Specification

STDF Design Objectives

STDF Record Structure

STDF Record Header
Record Types and Subtypes
Data Type Codes and Representation

Note on Time and Date Usage
Optional Fields and Missing/Invalid Data

STDF Record Types

Note on “Initial Sequence”
Alphabetical Listing
File Attributes Record (FAR) 16
Audit Trail Record (ATR) 17
Master Information Record (MIR) 18
Master Results Record (MRR) 21
Part Count Record (PCR) 22
Hardware Bin Record (HBR) 23
Software Bin Record (SBR) 25
Pin Map Record (PMR) 27
Pin Group Record (PGR) 29
Pin List Record (PLR) 30
Retest Data Record (RDR) 32
Site Description Record (SDR) 33

Table of Contents

STDF Specification V4 Page ii

Main Menu

Wafer Information Record (WIR) 35
Wafer Results Record (WRR) 36
Wafer Configuration Record (WCR) 38
Part Information Record (PIR) 40
Part Results Record (PRR) 41
Test Synopsis Record (TSR) 43
Parametric Test Record (PTR) 45
Multiple-Result Parametric Record (MPR) 51
Functional Test Record (FTR) 55
Begin Program Section Record (BPS) 60
End Program Section Record (EPS) 61
Generic Data Record (GDR) 62
Datalog Text Record (DTR) 64

STDF Filenames

STDF File Ordering

Storing Repair Information

Using the Pin Mapping Records

Differences Between STDF V3 and V4

Record Types
Data Types
Filename Characters
Required Records
Changes to Specific STDF Record Types

Glossary

Introduction to STDF

STDF Specification V4 Page 1

Main Menu

Introduction to STDF

As the ATE industry matures, many vendors offer networking systems that complement the test
systems themselves and help customers get more out of their ATE investment. Many of these
networking systems are converging on popular standards, such as Ethernet .

A glaring hole in these standards has been the lack of test result data compatibility between test
systems of different manufacturers, and sometimes within the product lines of a single manufacturer.
In order to help overcome this problem, Teradyne has developed a simple, flexible, portable data format
to which existing data files and formats can be easily and economically converted. Called the Standard
Test Data Format (STDF), its specification is contained in the following document.

It is our hope that both users and manufacturers of semiconductor ATE will find this standard useful,
and will incorporate it into their own operations and products. Teradyne has adopted this standard for
the test result output of all of its UNIX operating system based testers, and offers conversion
software for users of its Test System Director for our other semiconductor test systems. Teradyne
derives no direct commercial benefit from propagating this standard, but we hope its usefulness,
thoroughness, and full documentation will make all of us who work with ATE more productive.

Introduction to STDF

STDF Specification V4 Page 2

Main Menu

Teradyne’s Use of the STDF Specification

The Standard Test Data Format is intended as a comprehensive standard for the entire ATE industry,
not as a description of how Teradyne writes or analyzes test result data. A test system can support
STDF without using all the STDF record types or filling in all the fields of the record types it does use.
Similarly, when the specification says that an STDF record type can be used to create a certain report,
it cannot be assumed that Teradyne data analysis software always uses the record type to create its
reports. In addition, the statement that a field or record is required or optional applies only to the
definition of a valid STDF file; data analysis software may require a field that is declared optional in
the specification.

For this reason, the STDF specification is not the final reference on how any piece of Teradyne software
implements the specification. To determine how a Teradyne test system fills in the STDF record types,
please refer to the documentation for that test system’s executive software. To determine what STDF
fields are used by a Teradyne data analysis tool, refer to the documentation for the data analysis
product.

STDF Design Objectives

STDF Specification V4 Page 3

Main Menu

STDF Design Objectives

As ATE networking continues to emerge into a heterogeneous environment involving various
sophisticated computers and operating systems, it becomes necessary to define a common ground that
allows testers, database and database management systems, and data analysis software to store and
communicate test data in a form that is useful, general, and flexible.

The Standard Test Data Format (STDF) described in this document provides such a form. STDF is
flexible enough to meet the needs of the different testers that generate raw test data, the databases
that store the data, and the data analysis programs that use the data. The fact that it is a single,
coherent standard also facilitates the sharing and communicating of the data among these various
components of the complete ATE system.

STDF is not an attempt to specify a database architecture for either testers or the centralized database
engines. Instead, it is a set of logical record types. Because data items are described in terms of logical
record types, the record types can be used as the underlying data abstraction, whether the data resides
in a data buffer, resides on a mass storage device, or is being propagated in a network message. It is
independent of network or database architecture. Furthermore, the STDF logical record types may be
treated as a convenient data object by any of the software, either networking or database, that may be
used on a tester or database engine.

Using a standard but flexible test data format makes it possible for a single data formatting program
running on the centralized database engine to accept data from a wide range of testers, whether the
testers come from one vendor or from different vendors or are custom-built by the ATE user. In
addition, adherence to a standard format permits the exporting of data from the central database and
data analysis engine to the user’s in-house network for further analysis in a form that is well
documented and thoroughly debugged. Finally, the standard makes it possible to develop portable
software for data reporting and analysis on both the testers and the centralized database engine.

STDF Design Objectives

STDF Specification V4 Page 4

Main Menu

The following list summarizes the major objectives that guided the design of STDF:

• Be capable of storing test data for all semiconductor testers and trimmers.

• Provide a common format for storage and transmission of data.

• Provide a basis for portable data reporting and analysis software.

• Decouple data message format and database format to allow enhancements to either,
independently of the other.

• Provide support for optional (missing or invalid) data.

• Provide complete and concise documentation for developers and users.

• Make it easy for customers to write their own reports or reformat data for their own database.

STDF is already a standard within Teradyne:

• All Teradyne semiconductor testers produce raw data in a format that conforms to STDF.

• The Manufacturing Data Pipeline and Insight Series software can process any data written in
conformance with STDF.

STDF Record Structure

STDF Specification V4 Page 5

Main Menu

STDF Record Structure

This section describes the basic STDF record structure. It describes the following general topics, which
are applicable to all the record types:

• STDF record header (page 6)

• Record types and subtypes (page 6)

• Data type codes and representation (page 8)

• Optional fields and missing/invalid data (page 11)

STDF Record Structure STDF Record Header

STDF Specification V4 Page 6

Main Menu

STDF Record Header

Each STDF record begins with a record header consisting of the following three fields:

Record Types and Subtypes

The header of each STDF record contains a pair of fields called REC_TYP and REC_SUB. Each REC_TYP
value identifies a group of related STDF record types. Each REC_SUB value identifies a single STDF
record type within a REC_TYP group. The combination of REC_TYP and REC_SUB values uniquely
identifies each record type. This design allows groups of related records to be easily identified by data
analysis programs, while providing unique identification for each type of record in the file.

All REC_TYP and REC_SUB codes less than 200 are reserved for future use by Teradyne. All codes
greater than 200 are available for custom applications use. The codes are all in decimal values. The
official list of codes and documentation for their use is maintained by Teradyne’s Semiconductor CIM
Division (SCD).

Field Description

REC_LEN The number of bytes of data following the record header. REC_LEN does not
include the four bytes of the record header.

REC_TYP An integer identifying a group of related STDF record types.

REC_SUB An integer identifying a specific STDF record type within each REC_TYP group.
On REC_TYP and REC_SUB, see the next section.

STDF Record Structure Record Types and Subtypes

STDF Specification V4 Page 7

Main Menu

The following table lists the meaning of the REC_TYP codes currently defined by Teradyne, as well as
the REC_SUB codes defined in the STDF specification.

REC_TYP Code Meaning and STDF REC_SUB Codes

0 Information about the STDF file
10 File Attributes Record (FAR)
20 Audit Trail Record (ATR)

1 Data collected on a per lot basis
10 Master Information Record (MIR)
20 Master Results Record (MRR)
30 Part Count Record (PCR)
40 Hardware Bin Record (HBR)
50 Software Bin Record (SBR)
60 Pin Map Record (PMR)
62 Pin Group Record (PGR)
63 Pin List Record (PLR)
70 Retest Data Record (RDR)
80 Site Description Record (SDR)

2 Data collected per wafer
10 Wafer Information Record (WIR)
20 Wafer Results Record (WRR)
30 Wafer Configuration Record (WCR)

5 Data collected on a per part basis
10 Part Information Record (PIR)
20 Part Results Record (PRR)

10 Data collected per test in the test program
30 Test Synopsis Record (TSR)

15 Data collected per test execution
10 Parametric Test Record (PTR)
15 Multiple-Result Parametric Record (MPR)
20 Functional Test Record (FTR)

20 Data collected per program segment
10 Begin Program Section Record (BPS)
20 End Program Section Record (EPS)

50 Generic Data
10 Generic Data Record (GDR)
30 Datalog Text Record (DTR)

180 Reserved for use by Image software

181 Reserved for use by IG900 software

STDF Record Structure Data Type Codes and Representation

STDF Specification V4 Page 8

Main Menu

Data Type Codes and Representation

The STDF specification uses a set of data type codes that are concise and easily recognizable. For
example, R*4 indicates a REAL (float) value stored in four bytes. A byte consists of eight bits of data.
For purposes of this document, the low order bit of each byte is designated as bit 0 and the high order
bit as bit 7. The following table gives the complete list of STDF data type codes, as well as the
equivalent C language type specifier.

Code Description C Type Specifier

C*12 Fixed length character string:
If a fixed length character string does not fill the entire field, it
must be left-justified and padded with spaces.

char[12]

C*n Variable length character string:
first byte = unsigned count of bytes to follow (maximum of 255
bytes)

char[]

C*f Variable length character string:
string length is stored in another field

char[]

U*1 One byte unsigned integer unsigned char

U*2 Two byte unsigned integer unsigned short

U*4 Four byte unsigned integer unsigned long

I*1 One byte signed integer char

I*2 Two byte signed integer short

I*4 Four byte signed integer long

R*4 Four byte floating point number float

R*8 Eight byte floating point number long float (double)

B*6 Fixed length bit-encoded data char[6]

V*n Variable data type field:
The data type is specified by a code in the first byte, and the data
follows (maximum of 255 bytes)

B*n Variable length bit-encoded field:
First byte = unsigned count of bytes to follow (maximum of 255
bytes).
First data item in least significant bit of the second byte of the
array (first byte is count.)

char[]

STDF Record Structure Data Type Codes and Representation

STDF Specification V4 Page 9

Main Menu

Note on Time and Date Usage

The date and time field used in this specification is defined as a four byte (32 bit) unsigned integer field
measuring the number of seconds since midnight on January 1st, 1970, in the local time zone. This is
the UNIX standard base time, adjusted to the local time zone.

Refer to the Glossary for definitions of Setup time, Start time, and Finish time as used in STDF.

D*n Variable length bit-encoded field:
First two bytes = unsigned count of bits to follow (maximum of
65,535 bits).
First data item in least significant bit of the third byte of the array
(first two bytes are count).
Unused bits at the high order end of the last byte must be zero.

char[]

N*1 Unsigned integer data stored in a nibble.
(Nibble = 4 bits of a byte).
First item in low 4 bits, second item in high 4 bits.
If an odd number of nibbles is indicated, the high nibble of the byte
will be zero. Only whole bytes can be written to the STDF file.

char

kxTYPE Array of data of the type specified.
The value of ‘k’ (the number of elements in the array) is defined in
an earlier field in the record. For example, an array of short
unsigned integers is defined as kxU*2.

TYPE[]

Code Description C Type Specifier

STDF Record Structure Data Type Codes and Representation

STDF Specification V4 Page 10

Main Menu

Note on Data Representation

When data is shared among systems with unlike central processors, the problem arises that there is
little or no standardization of data representation (that is, the bit ordering of various data types)
among the various processors of the world. For example, the data representations for DEC, Motorola,
Intel, and IBM computers are all different, even though at least two of them adhere to the IEEE
floating point standard. Moreover, different processors made by the same company sometimes store
data in incompatible ways.

To address this problem, the STDF specification uses a field called CPU_TYPE in the File Attributes
Record (FAR). This field indicates the type of processor that wrote the data (for example, Sun series or
DEC-11 series). The field is used as follows:

• When writing an STDF file, a system uses its own native data representation. The type of the
writing processor is stored in the CPU_TYPE field.

• When reading an STDF file, a system must convert the records to its own native data
representation as it reads them, if necessary. To do so, it checks the value of the CPU_TYPE field
in the FAR, which is the first record in the file. Then, if the writing CPU’s data representation
is incompatible with its own, it uses a subroutine that reads the next (or selected) record and
converts the records to its own data representation as it reads them.

This approach has the following advantages:

• All testers, trimmers, and hosts can read and write local data using their native data
representation.

• Testing and local data analysis are not slowed down by performing data conversions on any
tester.

• Use of a read subroutine makes data conversion transparent at read time.

This approach works for any combination of host and tester processors, provided that the machines are
capable of storing and reading the test data in eight bit bytes.

STDF Record Structure Optional Fields and Missing/Invalid Data

STDF Specification V4 Page 11

Main Menu

Optional Fields and Missing/Invalid Data

Certain fields in STDF records are defined as optional. An optional field must be present in the record,
but there are ways to indicate that its value is not meaningful, that is, that its data should be
considered missing or invalid. There are two such methods:

• Some optional fields have a predefined value that means that the data for the field is missing.
For example, if the optional field is a variable-length character string, a length byte of 0 means
that the data is missing. If the field is numeric, a value of -1 may be defined as meaning that
the data is missing.

• For other optional fields, all possible stored values, including -1, are legal. In this case, the
STDF specification for the record defines an Optional Data bit field. Each bit is used to
designate whether an optional field in the record contains valid or invalid data. Usually, if the
bit for an optional field is set, any data in the field is invalid and should be ignored.

Optional fields at the end of a record may be omitted in order to save space on the storage medium. To
be omitted, an optional field must have missing or invalid data, and all the fields following it must be
optional fields containing missing or invalid data. It is never legal to omit an optional field from the
middle of the record.

The specification of each STDF record has a column labelled Missing/Invalid Data Flag. An entry in
this column means that the field is optional, and that the value shown is the way to flag the field’s data
as missing or invalid. If the column does not have an entry, the field is required.

Each data type has a standard way of indicating missing or invalid data, as the following table shows:

Data Type Missing/Invalid Data Flag

Variable-length string Set the length byte to 0.

Fixed-length character string Fill the field with spaces.

Fixed-length binary string Set a flag bit in an Optional Data byte.

Time and date fields Use a binary 0.

Signed and unsigned integers
and floating point values

Use the indicated reserved value
or set a flag bit in an Optional Data byte.

STDF Record Structure Optional Fields and Missing/Invalid Data

STDF Specification V4 Page 12

Main Menu

Note on “Required” and “Optional”

The distinction between required and optional fields applies only to the definition of a minimally
valid STDF file. It is not a statement about whether any software (even Teradyne software) requires
the field. A field that is marked optional in the specification may be required by software that reads
or analyzes the STDF file, even if Teradyne has written the software.

In most cases, a minimally valid STDF file will not provide sufficient input for a piece of analysis
software. You will need to fill in some fields or records that are not marked as required here.

This specification is not intended to define the data requirements for any analysis software. The only
authority on whether a piece of software requires a certain STDF field or record is the documentation
for that software.

STDF Record Types

STDF Specification V4 Page 13

Main Menu

STDF Record Types

This section contains the definitions for the STDF record types. The following information is provided
for each record type:

• a statement of function: how the record type is used in the STDF file.

• a table defining the data fields: first the standard STDF header, then the fields specific to this
record type. The information includes the field name, the data type (see the previous section
for the data type codes), a brief description of the field, and the flag to indicate missing or
invalid data (see the previous section for a discussion of optional fields).

• any additional notes on specific fields.

• possible uses for this record type in data analysis reports. Note that this entry states only
where the record type can be used. It is not a statement that the reports listed always use this
record type, even if Teradyne has written those reports. For definitive information on how any
data analysis software uses the STDF file, see the documentation for the data analysis
software.

• frequency with which the record type appears in the STDF file: for example, once per lot, once
per wafer, one per test, and so forth.

• the location of the record type in the STDF file. See the note on “initial sequence” on the next
page.

STDF Record Types

STDF Specification V4 Page 14

Main Menu

Note on “Initial Sequence”

For several record types, the “Location” says that the record must appear “after the initial sequence.”
The phrase “initial sequence” refers to the records that must appear at the beginning of the STDF file.
The requirements for the initial sequence are as follows:

• Every file must contain one File Attributes Record (FAR), one Master Information Record
(MIR), one or more Part Count Records (PCR), and one Master Results Record (MRR). All
other records are optional.

• The first record in the STDF file must be the File Attributes Record (FAR).

• If one or more Audit Trail Records (ATRs) are used, they must appear immediately after the
FAR.

• The Master Information Record (MIR) must appear in every STDF file. Its location must be
after the FAR and the ATRs (if ATRs are used).

• If the Retest Data Record (RDR) is used, it must appear immediately after the MIR.

• If one or more Site Description Records (SDRs) are used, they must appear immediately
after the MIR and RDR (if the RDR is used).

Given these requirements, every STDF record must contain one of these initial sequences:

FAR – MIR

FAR – ATRs – MIR

FAR – MIR – RDR

FAR – ATRs – MIR – RDR

FAR – MIR – SDRs

FAR – ATRs – MIR – SDRs

FAR – MIR – RDR – SDRs

FAR – ATRs – MIR – RDR – SDRs

All other STDF record types appear after the initial sequence.

STDF Record Types

STDF Specification V4 Page 15

Main Menu

Alphabetical Listing

In this section, the STDF record types appear in order of ascending record type and record subtype
codes. For easier reference, the record types are listed on this page in alphabetical order, by the
three-letter abbreviations for the record types.

Record Type Page

ATR Audit Trail Record page 17

BPS Begin Program Section Record page 60

DTR Datalog Text Record page 64

EPS End Program Section Record page 61

FAR File Attributes Record page 16

FTR Functional Test Record page 55

GDR Generic Data Record.................................... page 62

HBR Hardware Bin Record.................................. page 23

MIR Master Information Record......................... page 18

MPR Multiple-Result Parametric Record............ page 51

MRR Master Results Record page 21

PCR Part Count Record page 22

PGR Pin Group Record .. page 29

PIR Part Information Record page 40

PLR Pin List Record .. page 30

PMR Pin Map Record ... page 27

PRR Part Results Record..................................... page 41

PTR Parametric Test Record............................... page 45

RDR Retest Data Record...................................... page 32

SBR Software Bin Record.................................... page 25

SDR Site Description Record............................... page 33

TSR Test Synopsis Record................................... page 43

WCR Wafer Configuration Record page 38

WIR Wafer Information Record........................... page 35

WRR Wafer Results Record page 36

STDF Record Types File Attributes Record (FAR)

STDF Specification V4 Page 16

Main Menu

File Attributes Record (FAR)

Function: Contains the information necessary to determine how to decode the STDF data
contained in the file.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (0)
REC_SUB U*1 Record sub-type (10)

CPU_TYPE U*1 CPU type that wrote this file
STDF_VER U*1 STDF version number

Notes on Specific Fields:

Location: Required as the first record of the file.

CPU_TYPE Indicates which type of CPU wrote this STDF file. This information is useful for
determining the CPU-dependent data representation of the integer and floating point
fields in the file’s records. The valid values are:

0 = DEC PDP-11 and VAX processors. F and D floating point formats
will be used. G and H floating point formats will not be used.

1 = Sun 1, 2, 3, and 4 computers.

2 = Sun 386i computers, and IBM PC, IBM PC-AT, and IBM PC-XT
computers.

3-127 = Reserved for future use by Teradyne.

128-255 = Reserved for use by customers.

A code defined here may also be valid for other CPU types whose data formats are fully
compatible with that of the type listed here. Before using one of these codes for a CPU
type not listed here, please check with the Teradyne hotline, which can provide
additional information on CPU compatibility.

STDF_VER Identifies the version number of the STDF specification used in generating the data.
This allows data analysis programs to handle STDF specification enhancements.

STDF Record Types Audit Trail Record (ATR)

STDF Specification V4 Page 17

Main Menu

Audit Trail Record (ATR)

Function: Used to record any operation that alters the contents of the STDF file. The name of the
program and all its parameters should be recorded in the ASCII field provided in this
record. Typically, this record will be used to track filter programs that have been
applied to the data.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (0)
REC_SUB U*1 Record sub-type (20)

MOD_TIM U*4 Date and time of STDF file modification
CMD_LINE C*n Command line of program

Frequency: Optional. One for each filter or other data transformation program applied to the STDF
data.

Location: Between the File Attributes Record (FAR) and the Master Information Record (MIR).

The filter program that writes the altered STDF file must write its ATR immediately
after the FAR (and hence before any other ATRs that may be in the file). In this way,
multiple ATRs will be in reverse chronological order.

Possible Use: Determining whether a particular filter has been applied to the data.

STDF Record Types Master Information Record (MIR)

STDF Specification V4 Page 18

Main Menu

Master Information Record (MIR)

Function: The MIR and the MRR (Master Results Record) contain all the global information that
is to be stored for a tested lot of parts. Each data stream must have exactly one MIR,
immediately after the FAR (and the ATRs, if they are used). This will allow any data
reporting or analysis programs access to this information in the shortest possible
amount of time.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (10)

SETUP_T U*4 Date and time of job setup
START_T U*4 Date and time first part tested
STAT_NUM U*1 Tester station number
MODE_COD C*1 Test mode code (e.g. prod, dev) space
RTST_COD C*1 Lot retest code space
PROT_COD C*1 Data protection code space
BURN_TIM U*2 Burn-in time (in minutes) 65,535
CMOD_COD C*1 Command mode code space
LOT_ID C*n Lot ID (customer specified)
PART_TYP C*n Part Type (or product ID)
NODE_NAM C*n Name of node that generated data
TSTR_TYP C*n Tester type
JOB_NAM C*n Job name (test program name)
JOB_REV C*n Job (test program) revision number length byte = 0
SBLOT_ID C*n Sublot ID length byte = 0
OPER_NAM C*n Operator name or ID (at setup time) length byte = 0
EXEC_TYP C*n Tester executive software type length byte = 0
EXEC_VER C*n Tester exec software version number length byte = 0
TEST_COD C*n Test phase or step code length byte = 0
TST_TEMP C*n Test temperature length byte = 0
USER_TXT C*n Generic user text length byte = 0
AUX_FILE C*n Name of auxiliary data file length byte = 0
PKG_TYP C*n Package type length byte = 0
FAMLY_ID C*n Product family ID length byte = 0
DATE_COD C*n Date code length byte = 0
FACIL_ID C*n Test facility ID length byte = 0
FLOOR_ID C*n Test floor ID length byte = 0
PROC_ID C*n Fabrication process ID length byte = 0
OPER_FRQ C*n Operation frequency or step length byte = 0

(Continued)

STDF Record Types Master Information Record (MIR)

STDF Specification V4 Page 19

Main Menu

Field Data Field Missing/Invalid
Name Type Description Data Flag

SPEC_NAM C*n Test specification name length byte = 0
SPEC_VER C*n Test specification version number length byte = 0
FLOW_ID C*n Test flow ID length byte = 0
SETUP_ID C*n Test setup ID length byte = 0
DSGN_REV C*n Device design revision length byte = 0
ENG_ID C*n Engineering lot ID length byte = 0
ROM_COD C*n ROM code ID length byte = 0
SERL_NUM C*n Tester serial number length byte = 0
SUPR_NAM C*n Supervisor name or ID length byte = 0

Notes on Specific Fields:

MODE_COD Indicates the station mode under which the parts were tested. Currently defined
values for the MODE_COD field are:

A = AEL (Automatic Edge Lock) mode
C = Checker mode
D = Development / Debug test mode
E = Engineering mode (same as Development mode)
M = Maintenance mode
P = Production test mode
Q = Quality Control

All other alphabetic codes are reserved for future use by Teradyne. The characters 0 -
9 are available for customer use.

RTST_COD Indicates whether the lot of parts has been previously tested under the same test
conditions. Suggested values are:

Y = Lot was previously tested.
N = Lot has not been previously tested.

space = Not known if lot has been previously tested.
0 - 9 = Number of times lot has previously been tested.

PROT_COD User-defined field indicating the protection desired for the test data being stored. Valid
values are the ASCII characters 0 - 9 and A - Z. A space in this field indicates a missing
value (default protection).

CMOD_COD Indicates the command mode of the tester during testing of the parts. The user or the
tester executive software defines command mode values. Valid values are the ASCII
characters 0 - 9 and A - Z. A space indicates a missing value.

STDF Record Types Master Information Record (MIR)

STDF Specification V4 Page 20

Main Menu

Frequency: Always required. One per data stream.

Location: Immediately after the File Attributes Record (FAR) and the Audit Trail Records (ATR),
if ATRs are used.

Possible Use: Header information for all reports

TEST_COD A user-defined field specifying the phase or step in the device testing process.

TST_TEMP The test temperature is an ASCII string. Therefore, it can be stored as degrees Celsius,
Fahrenheit, Kelvin or whatever. It can also be expressed in terms like HOT, ROOM, and
COLD if that is preferred.

STDF Record Types Master Results Record (MRR)

STDF Specification V4 Page 21

Main Menu

Master Results Record (MRR)

Function: The Master Results Record (MRR) is a logical extension of the Master Information
Record (MIR). The data can be thought of as belonging with the MIR, but it is not
available when the tester writes the MIR information. Each data stream must have
exactly one MRR as the last record in the data stream.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (20)

FINISH_T U*4 Date and time last part tested
DISP_COD C*1 Lot disposition code space
USR_DESC C*n Lot description supplied by user length byte = 0
EXC_DESC C*n Lot description supplied by exec length byte = 0

Notes on Specific Fields:

Frequency: Exactly one MRR required per data stream.

Location: Must be the last record in the data stream.

Possible Use: Final Summary Sheet Merged Summary Sheet
Datalog Test Results Synopsis Report
Wafer Map Trend Plot
Histogram ADART
Correlation RTBM
Shmoo Plot User Data
Repair Report

DISP_COD Supplied by the user to indicate the disposition of the lot of parts (or of the tester itself,
in the case of checker or AEL data). The meaning of DISP_COD values are user-defined.
A valid value is an ASCII alphanumeric character (0 - 9 or A - Z). A space indicates a
missing value.

STDF Record Types Part Count Record (PCR)

STDF Specification V4 Page 22

Main Menu

Part Count Record (PCR)

Function: Contains the part count totals for one or all test sites. Each data stream must have at
least one PCR to show the part count.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (30)

HEAD_NUM U*1 Test head number See note
SITE_NUM U*1 Test site number
PART_CNT U*4 Number of parts tested
RTST_CNT U*4 Number of parts retested 4,294,967,295
ABRT_CNT U*4 Number of aborts during testing 4,294,967,295
GOOD_CNT U*4 Number of good (passed) parts tested 4,294,967,295
FUNC_CNT U*4 Number of functional parts tested 4,294,967,295

Notes on Specific Fields:

Frequency: There must be at least one PCR in the file: either one summary PCR for all test sites
(HEAD_NUM = 255), or one PCR for each head/site combination, or both.

Location: Anywhere in the data stream after the initial sequence (see page 14) and before the
MRR. When data is being recorded in real time, this record will usually appear near the
end of the data stream.

Possible Use: Final Summary Sheet Merged Summary Sheet
Site Summary Sheet Report for Lot Tracking System

HEAD_NUM If this PCR contains a summary of the part counts for all test sites, this field must be
set to 255.

GOOD_CNT,
FUNC_CNT

A part is considered good when it is binned into one of the “passing” hardware bins. A
part is considered functional when it is good enough to test, whether it passes or not.
Parts that are incomplete or have shorts or opens are considered non-functional.

STDF Record Types Hardware Bin Record (HBR)

STDF Specification V4 Page 23

Main Menu

Hardware Bin Record (HBR)

Function: Stores a count of the parts “physically” placed in a particular bin after testing. (In
wafer testing, “physical” binning is not an actual transfer of the chip, but rather is
represented by a drop of ink or an entry in a wafer map file.) This bin count can be for
a single test site (when parallel testing) or a total for all test sites. The STDF
specification also supports a Software Bin Record (SBR) for logical binning categories.
A part is “physically” placed in a hardware bin after testing. A part can be “logically”
associated with a software bin during or after testing.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (40)

HEAD_NUM U*1 Test head number See note
SITE_NUM U*1 Test site number
HBIN_NUM U*2 Hardware bin number
HBIN_CNT U*4 Number of parts in bin
HBIN_PF C*1 Pass/fail indication space
HBIN_NAM C*n Name of hardware bin length byte = 0

Notes on Specific Fields:

Frequency: One per hardware bin for each site. One per hardware bin for bin totals.
May be included to name unused bins.

Location: Anywhere in the data stream after the initial sequence (see page 14) and before the
MRR. When data is being recorded in real time, this record usually appears near the
end of the data stream.

HEAD_NUM If this HBR contains a summary of the hardware bin counts for all test sites, this field
must be set to 255.

HBIN_NUM Has legal values in the range 0 to 32767.

HBIN_PF This field indicates whether the hardware bin was a passing or failing bin. Valid values
for this field are:

P = Passing bin
F = Failing bin

space = Unknown

STDF Record Types Hardware Bin Record (HBR)

STDF Specification V4 Page 24

Main Menu

Possible Use: Final Summary Sheet Merged Summary Sheet
Site Summary Sheet Report for Lot Tracking System

STDF Record Types Software Bin Record (SBR)

STDF Specification V4 Page 25

Main Menu

Software Bin Record (SBR)

Function: Stores a count of the parts associated with a particular logical bin after testing. This
bin count can be for a single test site (when parallel testing) or a total for all test sites.
The STDF specification also supports a Hardware Bin Record (HBR) for actual physical
binning. A part is “physically” placed in a hardware bin after testing. A part can be
“logically” associated with a software bin during or after testing.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (50)

HEAD_NUM U*1 Test head number See note
SITE_NUM U*1 Test site number
SBIN_NUM U*2 Software bin number
SBIN_CNT U*4 Number of parts in bin
SBIN_PF C*1 Pass/fail indication space
SBIN_NAM C*n Name of software bin length byte = 0

Notes on Specific Fields:

Frequency: One per software bin for each site. One per software bin for bin totals.
May be included to name unused bins.

Location: Anywhere in the data stream after the initial sequence (see page 14) and before the
MRR. When data is being recorded in real time, this record usually appears near the
end of the data stream.

HEAD_NUM If this SBR contains a summary of the software bin counts for all test sites, this field
must be set to 255.

SBIN_NUM Has legal values in the range 0 to 32767.

SBIN_PF This field indicates whether the software bin was a passing or failing bin. Valid values
for this field are:

P = Passing bin
F = Failing bin

space = Unknown

STDF Record Types Software Bin Record (SBR)

STDF Specification V4 Page 26

Main Menu

Possible Use: Final Summary Sheet Merged Summary Sheet
Site Summary Sheet Report for Lot Tracking System

STDF Record Types Pin Map Record (PMR)

STDF Specification V4 Page 27

Main Menu

Pin Map Record (PMR)

Function: Provides indexing of tester channel names, and maps them to physical and logical pin
names. Each PMR defines the information for a single channel/pin combination. See
“Using the Pin Mapping Records” on page 77.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (60)

PMR_INDX U*2 Unique index associated with pin
CHAN_TYP U*2 Channel type 0
CHAN_NAM C*n Channel name length byte = 0
PHY_NAM C*n Physical name of pin length byte = 0
LOG_NAM C*n Logical name of pin length byte = 0
HEAD_NUM U*1 Head number associated with channel 1
SITE_NUM U*1 Site number associated with channel 1

Notes on Specific Fields:

Frequency: One per channel/pin combination used in the test program.
Reuse of a PMR index number is not permitted.

Location: After the initial sequence (see page 14) and before the first PGR, PLR, FTR, or MPR that
uses this record’s PMR_INDX value.

PMR_INDX This number is used to associate the channel and pin name information with data in
the FTR or MPR. Reporting programs can then look up the PMR index and choose which
of the three associated names they will use.
The range of legal PMR indexes is 1 - 32,767.
The size of the FAIL_PIN and SPIN_MAP arrays in the FTR are directly proportional to
the highest PMR index number. Therefore, it is important to start PMR indexes with a
low number and use consecutive numbers if possible.

CHAN_TYP The channel type values are tester-specific. Please refer to the tester documentation for
a list of the valid tester channel types and codes.

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing and does not have a standard way of
identifying its single test site or head, these fields should be set to 1. If missing, the
value of these fields will default to 1.

STDF Record Types Pin Map Record (PMR)

STDF Specification V4 Page 28

Main Menu

Possible Use: Functional Datalog Functional Histogram

STDF Record Types Pin Group Record (PGR)

STDF Specification V4 Page 29

Main Menu

Pin Group Record (PGR)

Function: Associates a name with a group of pins. See “Using the Pin Mapping Records” on
page 77.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (62)

GRP_INDX U*2 Unique index associated with pin group
GRP_NAM C*n Name of pin group length byte = 0
INDX_CNT U*2 Count (k) of PMR indexes
PMR_INDX kxU*2 Array of indexes for pins in the group INDX_CNT = 0

Notes on Specific Fields:

Frequency: One per pin group defined in the test program.

Location: After all the PMRs whose PMR index values are listed in the PMR_INDX array of this
record; and before the first PLR that uses this record’s GRP_INDX value.

Possible Use: Functional Datalog

GRP_INDX The range of legal group index numbers is 32,768 - 65,535.

INDX_CNT,
PMR_INDX

PMR_INDX is an array of PMR indexes whose length is defined by INDX_CNT. The order
of the PMR indexes should be from most significant to least significant bit in the pin
group (regardless of the order of PMR index numbers).

STDF Record Types Pin List Record (PLR)

STDF Specification V4 Page 30

Main Menu

Pin List Record (PLR)

Function: Defines the current display radix and operating mode for a pin or pin group. See “Using
the Pin Mapping Records” on page 77.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (63)

GRP_CNT U*2 Count (k) of pins or pin groups
GRP_INDX kxU*2 Array of pin or pin group indexes
GRP_MODE kxU*2 Operating mode of pin group 0
GRP_RADX kxU*1 Display radix of pin group 0
PGM_CHAR kxC*n Program state encoding characters length byte = 0
RTN_CHAR kxC*n Return state encoding characters length byte = 0
PGM_CHAL kxC*n Program state encoding characters length byte = 0
RTN_CHAL kxC*n Return state encoding characters length byte = 0

Notes on Specific Fields:

GRP_CNT GRP_CNT defines the number of pins or pin groups whose radix and mode are being
defined. Therefore, it defines the size of each of the arrays that follow in the record.
GRP_CNT must be greater than zero.

GRP_MODE The following are valid values for the pin group mode:
00 = Unknown
10 = Normal
20 = SCIO (Same Cycle I/O)
21 = SCIO Midband
22 = SCIO Valid
23 = SCIO Window Sustain
30 = Dual drive (two drive bits per cycle)
31 = Dual drive Midband
32 = Dual drive Valid
33 = Dual drive Window Sustain

Unused pin group modes in the range of 1 through 32,767 are reserved for future use.
Pin group modes 32,768 through 65,535 are available for customer use.

STDF Record Types Pin List Record (PLR)

STDF Specification V4 Page 31

Main Menu

Note on Missing/Invalid Data Flags:
For each field, the missing/invalid data flag applies to each member of the
array, not to the array as a whole. Empty arrays (or empty members of
arrays) can be omitted if they occur at the end of the record. Otherwise,
each array must have the number of members indicated by GRP_CNT. You
can then use the field’s missing/invalid data flag to indicate which array
members have no data. For example, if GRP_CNT = 3, and if PGM_CHAL
contains no data (but RTN_CHAL, which appears after PGM_CHAL, does),
then PGM_CHAL should be an array of three missing/invalid data flags: 0,
0, 0.

Frequency: One or more whenever the usage of a pin or pin group changes in the test program.

Location: After all the PMRs and PGRs whose PMR index values and pin group index values are
listed in the GRP_INDX array of this record; and before the first FTR that references pins
or pin groups whose modes are defined in this record.

Possible Use: Functional Datalog

GRP_RADX The following are valid values for the pin group display radix:
0 = Use display program default
2 = Display in Binary
8 = Display in Octal
10 = Display in Decimal
16 = Display in Hexadecimal
20 = Display as symbolic

PGM_CHAR,
PGM_CHAL

These ASCII characters are used to display the programmed state in the FTR or MPR.
Use of these character arrays makes it possible to store tester-dependent display
representations in a tester-independent format. If a single character is used to
represent each programmed state, then only the PGM_CHAR array need be used. If two
characters represent each state, then the first (left) character is stored in PGM_CHAL
and the second (right) character is stored in PGM_CHAR.

RTN_CHAR,
RTN_CHAL

These ASCII characters are used to display the returned state in the FTR or MPR. Use
of these character arrays makes it possible to store tester-dependent display
representations in a tester-independent format. If a single character is used to
represent each returned state, then only the RTN_CHAR array need be used. If two
characters represent each state, then the first (left) character is stored in RTN_CHAL
and the second (right) character is stored in RTN_CHAR.

STDF Record Types Retest Data Record (RDR)

STDF Specification V4 Page 32

Main Menu

Retest Data Record (RDR)

Function: Signals that the data in this STDF file is for retested parts. The data in this record,
combined with information in the MIR, tells data filtering programs what data to
replace when processing retest data.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (70)

NUM_BINS U*2 Number (k) of bins being retested
RTST_BIN kxU*2 Array of retest bin numbers NUM_BINS = 0

Notes on Specific Fields:

Frequency: Optional. One per data stream.

Location: If this record is used, it must appear immediately after the Master Information Record
(MIR).

Possible Use: Tells data filtering programs how to handle retest data.

NUM_BINS,
RTST_BIN

NUM_BINS indicates the number of hardware bins being retested and therefore the size
of the RTST_BIN array that follows. If NUM_BINS is zero, then all bins in the lot are being
retested and RTST_BIN is omitted.
The LOT_ID, SUBLOT_ID, and TEST_COD of the current STDF file should match those of
the STDF file that is being retested, so the data can be properly merged at a later time.

STDF Record Types Site Description Record (SDR)

STDF Specification V4 Page 33

Main Menu

Site Description Record (SDR)

Function: Contains the configuration information for one or more test sites, connected to one test
head, that compose a site group.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (80)

HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number
SITE_CNT U*1 Number (k) of test sites in site group
SITE_NUM kxU*1 Array of test site numbers
HAND_TYP C*n Handler or prober type length byte = 0
HAND_ID C*n Handler or prober ID length byte = 0
CARD_TYP C*n Probe card type length byte = 0
CARD_ID C*n Probe card ID length byte = 0
LOAD_TYP C*n Load board type length byte = 0
LOAD_ID C*n Load board ID length byte = 0
DIB_TYP C*n DIB board type length byte = 0
DIB_ID C*n DIB board ID length byte = 0
CABL_TYP C*n Interface cable type length byte = 0
CABL_ID C*n Interface cable ID length byte = 0
CONT_TYP C*n Handler contactor type length byte = 0
CONT_ID C*n Handler contactor ID length byte = 0
LASR_TYP C*n Laser type length byte = 0
LASR_ID C*n Laser ID length byte = 0
EXTR_TYP C*n Extra equipment type field length byte = 0
EXTR_ID C*n Extra equipment ID length byte = 0

Notes on Specific Fields:

SITE_GRP Specifies a site group number (called a station number on some testers) for the group
of sites whose configuration is defined by this record. Note that this is different from
the station number specified in the MIR, which refers to a software station only.
The value in this field must be unique within the STDF file.

SITE_CNT,
SITE_NUM

SITE_CNT tells how many sites are in the site group that the current SDR configuration
applies to. SITE_NUM is an array of those site numbers.

STDF Record Types Site Description Record (SDR)

STDF Specification V4 Page 34

Main Menu

Frequency: One for each site or group of sites that is differently configured.

Location: Immediately after the MIR and RDR (if an RDR is used).

Possible Use: Correlation of yield to interface or peripheral equipment

_TYP fields These are the type or model number of the interface or peripheral equipment being
used for testing:

HAND_TYP,CARD_TYP,LOAD_TYP,DIB_TYP,
CABL_TYP,CONT_TYP,LASR_TYP,EXTR_TYP

_ID fields These are the IDs or serial numbers of the interface or peripheral equipment being
used for testing:

HAND_ID,CARD_ID,LOAD_ID,DIB_ID,
CABL_ID,CONT_ID,LASR_ID,EXTR_ID

STDF Record Types Wafer Information Record (WIR)

STDF Specification V4 Page 35

Main Menu

Wafer Information Record (WIR)

Function: Acts mainly as a marker to indicate where testing of a particular wafer begins for each
wafer tested by the job plan. The WIR and the Wafer Results Record (WRR) bracket all
the stored information pertaining to one tested wafer. This record is used only when
testing at wafer probe. A WIR/WRR pair will have the same HEAD_NUM and SITE_GRP
values.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (2)
REC_SUB U*1 Record sub-type (10)

HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number 255
START_T U*4 Date and time first part tested
WAFER_ID C*n Wafer ID length byte = 0

Notes on Specific Fields:

Frequency: One per wafer tested.

Location: Anywhere in the data stream after the initial sequence (see page 14) and before the
MRR.
Sent before testing each wafer.

Possible Use: Wafer Summary Sheet Datalog
Wafer Map

SITE_GRP Refers to the site group in the SDR. This is a means of relating the wafer information
to the configuration of the equipment used to test it. If this information is not known,
or the tester does not support the concept of site groups, this field should be set to 255.

WAFER_ID Is optional, but is strongly recommended in order to make the resultant data files as
useful as possible.

STDF Record Types Wafer Results Record (WRR)

STDF Specification V4 Page 36

Main Menu

Wafer Results Record (WRR)

Function: Contains the result information relating to each wafer tested by the job plan. The WRR
and the Wafer Information Record (WIR) bracket all the stored information pertaining
to one tested wafer. This record is used only when testing at wafer probe time. A
WIR/WRR pair will have the same HEAD_NUM and SITE_GRP values.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (2)
REC_SUB U*1 Record sub-type (20)

HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number 255
FINISH_T U*4 Date and time last part tested
PART_CNT U*4 Number of parts tested
RTST_CNT U*4 Number of parts retested 4,294,967,295
ABRT_CNT U*4 Number of aborts during testing 4,294,967,295
GOOD_CNT U*4 Number of good (passed) parts tested 4,294,967,295
FUNC_CNT U*4 Number of functional parts tested 4,294,967,295
WAFER_ID C*n Wafer ID length byte = 0
FABWF_ID C*n Fab wafer ID length byte = 0
FRAME_ID C*n Wafer frame ID length byte = 0
MASK_ID C*n Wafer mask ID length byte = 0
USR_DESC C*n Wafer description supplied by user length byte = 0
EXC_DESC C*n Wafer description supplied by exec length byte = 0

Notes on Specific Fields:

SITE_GRP Refers to the site group in the SDR. This is a means of relating the wafer information
to the configuration of the equipment used to test it. If this information is not known,
or the tester does not support the concept of site groups, this field should be set to 255.

WAFER_ID Is optional, but is strongly recommended in order to make the resultant data files as
useful as possible. A Wafer ID in the WRR supersedes any Wafer ID found in the WIR.

FABWF_ID Is the ID of the wafer when it was in the fabrication process. This facilitates tracking
of wafers and correlation of yield with fabrication variations.

FRAME_ID Facilitates tracking of wafers once the wafer has been through the saw step and the
wafer ID is no longer readable on the wafer itself. This is an important piece of
information for implementing an inkless binning scheme.

STDF Record Types Wafer Results Record (WRR)

STDF Specification V4 Page 37

Main Menu

Frequency: One per wafer tested.

Location: Anywhere in the data stream after the corresponding WIR.
Sent after testing each wafer.

Possible Use: Wafer Summary Sheet Datalog
Wafer Map

STDF Record Types Wafer Configuration Record (WCR)

STDF Specification V4 Page 38

Main Menu

Wafer Configuration Record (WCR)

Function: Contains the configuration information for the wafers tested by the job plan. The
WCR provides the dimensions and orientation information for all wafers and dice
in the lot. This record is used only when testing at wafer probe time.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (2)
REC_SUB U*1 Record sub-type (30)

WAFR_SIZ R*4 Diameter of wafer in WF_UNITS 0
DIE_HT R*4 Height of die in WF_UNITS 0
DIE_WID R*4 Width of die in WF_UNITS 0
WF_UNITS U*1 Units for wafer and die dimensions 0
WF_FLAT C*1 Orientation of wafer flat space
CENTER_X I*2 X coordinate of center die on wafer -32768
CENTER_Y I*2 Y coordinate of center die on wafer -32768
POS_X C*1 Positive X direction of wafer space
POS_Y C*1 Positive Y direction of wafer space

Notes on Specific Fields:

WF_UNITS Has these valid values: 0 = Unknown units
1 = Units are in inches
2 = Units are in centimeters
3 = Units are in millimeters
4 = Units are in mils

WF_FLAT Has these valid values: U = Up
D = Down
L = Left
R = Right

space = Unknown

CENTER_X,
CENTER_Y

Use the value -32768 to indicate that the field is invalid.

STDF Record Types Wafer Configuration Record (WCR)

STDF Specification V4 Page 39

Main Menu

Frequency: One per STDF file (used only if wafer testing).

Location: Anywhere in the data stream after the initial sequence (see page 14), and before the
MRR.

Possbile Use: Wafer Map

POS_X Has these valid values: L = Left
R = Right

space = Unknown

POS_Y Has these valid values: U = Up
D = Down

space = Unknown

STDF Record Types Part Information Record (PIR)

STDF Specification V4 Page 40

Main Menu

Part Information Record (PIR)

Function: Acts as a marker to indicate where testing of a particular part begins for each part
tested by the test program. The PIR and the Part Results Record (PRR) bracket all the
stored information pertaining to one tested part.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (5)
REC_SUB U*1 Record sub-type (10)

HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number

Notes on Specific Fields:

Frequency: One per part tested.

Location: Anywhere in the data stream after the initial sequence (see page 14), and before the
corresponding PRR.
Sent before testing each part.

Possible Use: Datalog

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing, and does not have a standard way to
identify its single test site or head, then these fields should be set to 1.
When parallel testing, these fields are used to associate individual datalogged results
(FTRs and PTRs) with a PIR/PRR pair. An FTR or PTR belongs to the PIR/PRR pair having
the same values for HEAD_NUM and SITE_NUM.

STDF Record Types Part Results Record (PRR)

STDF Specification V4 Page 41

Main Menu

Part Results Record (PRR)

Function: Contains the result information relating to each part tested by the test program. The
PRR and the Part Information Record (PIR) bracket all the stored information
pertaining to one tested part.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (5)
REC_SUB U*1 Record sub-type (20)

HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
PART_FLG B*1 Part information flag
NUM_TEST U*2 Number of tests executed
HARD_BIN U*2 Hardware bin number
SOFT_BIN U*2 Software bin number 65535
X_COORD I*2 (Wafer) X coordinate -32768
Y_COORD I*2 (Wafer) Y coordinate -32768
TEST_T U*4 Elapsed test time in milliseconds 0
PART_ID C*n Part identification length byte = 0
PART_TXT C*n Part description text length byte = 0
PART_FIX B*n Part repair information length byte = 0

Notes on Specific Fields:

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing, and does not have a standard way to
identify its single test site or head, then these fields should be set to 1.
When parallel testing, these fields are used to associate individual datalogged results
(FTRs and PTRs) with a PIR/PRR pair. An FTR or PTR belongs to the PIR/PRR pair having
the same values for HEAD_NUM and SITE_NUM.

X_COORD,
Y_COORD

Have legal values in the range -32767 to 32767. A missing value is indicated by the
value -32768.

X_COORD,
Y_COORD,
PART_ID

Are all optional, but you should provide either the PART_ID or the X_COORD and
Y_COORD in order to make the resultant data useful for analysis.

STDF Record Types Part Results Record (PRR)

STDF Specification V4 Page 42

Main Menu

Frequency: One per part tested.

Location: Anywhere in the data stream after the corresponding PIR and before the MRR.
Sent after completion of testing each part.

Possible Use: Datalog Wafer map
RTBM Shmoo Plot
Repair Data

PART_FLG Contains the following fields:

bit 0: 0 = This is a new part. Its data device does not supersede that of any previous
device.

1 = The PIR, PTR, MPR, FTR, and PRR records that make up the current
sequence (identified as having the same HEAD_NUM and SITE_NUM)
supersede any previous sequence of records with the same PART_ID. (A
repeated part sequence usually indicates a mistested part.)

bit 1: 0 = This is a new part. Its data device does not supersede that of any previous
device.

1 = The PIR, PTR, MPR, FTR, and PRR records that make up the current
sequence (identified as having the same HEAD_NUM and SITE_NUM)
supersede any previous sequence of records with the same X_COORD and
Y_COORD. (A repeated part sequence usually indicates a mistested part.)

Note: Either Bit 0 or Bit 1 can be set, but not both. (It is also valid to have neither
set.)

bit 2: 0 = Part testing completed normally
1 = Abnormal end of testing

bit 3: 0 = Part passed
1 = Part failed

bit 4: 0 = Pass/fail flag (bit 3) is valid
1 = Device completed testing with no pass/fail indication (i.e., bit 3 is invalid)

bits 5 - 7: Reserved for future use — must be 0

HARD_BIN Has legal values in the range 0 to 32767.

SOFT_BIN Has legal values in the range 0 to 32767. A missing value is indicated by the value
65535.

PART_FIX This is an application-specific field for storing device repair information. It may be used
for bit-encoded, integer, floating point, or character information. Regardless of the
information stored, the first byte must contain the number of bytes to follow. This field
can be decoded only by an application-specific analysis program. See “Storing Repair
Information” on page 75.

STDF Record Types Test Synopsis Record (TSR)

STDF Specification V4 Page 43

Main Menu

Test Synopsis Record (TSR)

Function: Contains the test execution and failure counts for one parametric or functional test in
the test program. Also contains static information, such as test name. The TSR is
related to the Functional Test Record (FTR), the Parametric Test Record (PTR), and the
Multiple Parametric Test Record (MPR) by test number, head number, and site
number.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (10)
REC_SUB U*1 Record sub-type (30)

HEAD_NUM U*1 Test head number See note
SITE_NUM U*1 Test site number
TEST_TYP C*1 Test type space
TEST_NUM U*4 Test number
EXEC_CNT U*4 Number of test executions 4,294,967,295
FAIL_CNT U*4 Number of test failures 4,294,967,295
ALRM_CNT U*4 Number of alarmed tests 4,294,967,295
TEST_NAM C*n Test name length byte = 0
SEQ_NAME C*n Sequencer (program segment/flow) name length byte = 0
TEST_LBL C*n Test label or text length byte = 0
OPT_FLAG B*1 Optional data flag See note
TEST_TIM R*4 Average test execution time in seconds OPT_FLAG bit 2 = 1
TEST_MIN R*4 Lowest test result value OPT_FLAG bit 0 = 1
TEST_MAX R*4 Highest test result value OPT_FLAG bit 1 = 1
TST_SUMS R*4 Sum of test result values OPT_FLAG bit 4 = 1
TST_SQRS R*4 Sum of squares of test result values OPT_FLAG bit 5 = 1

Notes on Specific Fields:

HEAD_NUM If this TSR contains a summary of the test counts for all test sites, this field must be
set to 255.

TEST_TYP Indicates what type of test this summary data is for. Valid values are:

P = Parametric test
F = Functional test
M = Multiple-result parametric test

space = Unknown

STDF Record Types Test Synopsis Record (TSR)

STDF Specification V4 Page 44

Main Menu

Frequency: One for each test executed in the test program.
May optionally be used to identify unexecuted tests.

Location: Anywhere in the data stream after the initial sequence (see page 14) and before the
MRR.
When test data is being generated in real-time, these records will appear after the last
PRR.

Possible Use: Final Summary Sheet Datalog
Merged Summary Sheet Histogram
Wafer Map Functional Histogram

EXEC_CNT,
FAIL_CNT,
ALRM_CNT

Are optional, but are strongly recommended because they are needed to compute
values for complete final summary sheets.

OPT_FLAG Contains the following fields:
bit 0 set = TEST_MIN value is invalid
bit 1 set = TEST_MAX value is invalid
bit 2 set = TEST_TIM value is invalid
bit 3 is reserved for future use and must be 1
bit 4 set = TST_SUMS value is invalid
bit 5 set = TST_SQRS value is invalid
bits 6 - 7 are reserved for future use and must be 1

OPT_FLAG is optional if it is the last field in the record.

TST_SUMS,
TST_SQRS

Are useful in calculating the mean and standard deviation for a single lot or when
combining test data from multiple STDF files.

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 45

Main Menu

Parametric Test Record (PTR)

Function: Contains the results of a single execution of a parametric test in the test program. The
first occurrence of this record also establishes the default values for all semi-static
information about the test, such as limits, units, and scaling. The PTR is related to the
Test Synopsis Record (TSR) by test number, head number, and site number.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (15)
REC_SUB U*1 Record sub-type (10)

TEST_NUM U*4 Test number
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
TEST_FLG B*1 Test flags (fail, alarm, etc.)
PARM_FLG B*1 Parametric test flags (drift, etc.)
RESULT R*4 Test result TEST_FLG bit 1 = 1
TEST_TXT C*n Test description text or label length byte = 0
ALARM_ID C*n Name of alarm length byte = 0

OPT_FLAG B*1 Optional data flag See note
RES_SCAL I*1 Test results scaling exponent OPT_FLAG bit 0 = 1
LLM_SCAL I*1 Low limit scaling exponent OPT_FLAG bit 4 or 6 = 1
HLM_SCAL I*1 High limit scaling exponent OPT_FLAG bit 5 or 7 = 1
LO_LIMIT R*4 Low test limit value OPT_FLAG bit 4 or 6 = 1
HI_LIMIT R*4 High test limit value OPT_FLAG bit 5 or 7 = 1
UNITS C*n Test units length byte = 0
C_RESFMT C*n ANSI C result format string length byte = 0
C_LLMFMT C*n ANSI C low limit format string length byte = 0
C_HLMFMT C*n ANSI C high limit format string length byte = 0
LO_SPEC R*4 Low specification limit value OPT_FLAG bit 2 = 1
HI_SPEC R*4 High specification limit value OPT_FLAG bit 3 = 1

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 46

Main Menu

Notes on Specific Fields:

Default Data All data following the OPT_FLAG field has a special function in the STDF file. The first
PTR for each test will have these fields filled in. These values will be the default for each
subsequent PTR with the same test number: if a subsequent PTR has a value for one of
these fields, it will be used instead of the default, for that one record only; if the field is
blank, the default will be used. This method replaces use of the PDR in STDF V3.
If the PTR is not associated with a test execution (that is, it contains only default
information), bit 4 of the TEST_FLG field must be set, and the PARM_FLG field must be
zero.
Unless the default is being overridden, the default data fields should be omitted in
order to save space in the file.
Note that RES_SCAL, LLM_SCAL, HLM_SCAL, UNITS, C_RESFMT, C_LLMFMT, and
C_HLMFMT are interdependent. If you are overriding the default value of one, make
sure that you also make appropriate changes to the others in order to keep them
consistent.
For character strings, you can override the default with a null value by setting the
string length to 1 and the string itself to a single binary 0.

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing, and does not have a standard way of
identifying its single test site or head, these fields should be set to 1.
When parallel testing, these fields are used to associate individual datalogged results
with a PIR/PRR pair. A PTR belongs to the PIR/PRR pair having the same values for
HEAD_NUM and SITE_NUM.

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 47

Main Menu

TEST_FLG Contains the following fields:

bit 0: 0 = No alarm
1 = Alarm detected during testing

bit 1: 0 = The value in the RESULT field is valid (see note on RESULT)
1 = The value in the RESULT field is not valid. This setting indicates that the

test was executed, but no datalogged value was taken. You should read
bits 6 and 7 of TEST_FLG to determine if the test passed or failed.

bit 2: 0 = Test result is reliable
1 = Test result is unreliable

bit 3: 0 = No timeout
1 = Timeout occurred

bit 4: 0 = Test was executed
1 = Test not executed

bit 5: 0 = No abort
1 = Test aborted

bit 6: 0 = Pass/fail flag (bit 7) is valid
1 = Test completed with no pass/fail indication

bit 7: 0 = Test passed
1 = Test failed

PARM_FLG Is the parametric flag field, and contains the following bits:

bit 0: 0 = No scale error
1 = Scale error

bit 1: 0 = No drift error
1 = Drift error (unstable measurement)

bit 2: 0 = No oscillation
1 = Oscillation detected

bit 3: 0 = Measured value not high
1 = Measured value higher than high test limit

bit 4: 0 = Measured value not low
1 = Measured value lower than low test limit

bit 5: 0 = Test failed or test passed standard limits
1 = Test passed alternate limits

bit 6: 0 = If result = low limit, then result is “fail.”
1 = If result = low limit, then result is “pass.”

bit 7: 0 = If result = high limit, then result is “fail.”
1 = If result = high limit, then result is “pass.”

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 48

Main Menu

Frequency: One per parametric test execution.

RESULT The RESULT value is considered useful only if all the following bits from TEST_FLG and
PARM_FLG are 0:

TEST_FLG bit 0 = 0 no alarm
bit 1 = 0 value in result field is valid
bit 2 = 0 test result is reliable
bit 3 = 0 no timeout
bit 4 = 0 test was executed
bit 5 = 0 no abort

PARM_FLG bit 0 = 0 no scale error
bit 1 = 0 no drift error
bit 2 = 0 no oscillation

If any one of these bits is 1, then the PTR result should not be used.

ALARM_ID If the alarm flag (bit 0 of TEST_FLG) is set, this field can contain the name or ID of the
alarms that were triggered. Alarm names are tester-dependent.

OPT_FLAG Is the Optional data flag and contains the following bits:

bit 0 set = RES_SCAL value is invalid. The default set by the first PTR with this test
number will be used.

bit 1 reserved for future used and must be 1.

bit 2 set = No low specification limit.

bit 3 set = No high specification limit.

bit 4 set = LO_LIMIT and LLM_SCAL are invalid. The default values set for these fields
in the first PTR with this test number will be used.

bit 5 set = HI_LIMIT and HLM_SCAL are invalid. The default values set for these fields
in the first PTR with this test number will be used.

bit 6 set = No Low Limit for this test (LO_LIMIT and LLM_SCAL are invalid).

bit 7 set = No High Limit for this test (HI_LIMIT and HLM_SCAL are invalid).
The OPT_FLAG field may be omitted if it is the last field in the record.

C_RESFMT,
C_LLMFMT,
C_HLMFMT

ANSI C format strings for use in formatting the test result and low and high limits
(both test and spec). For example, “%7.2f”.The format string is also known as an output
specification string, as used with the printf statement. See any ANSI C reference man,
or the man page on printf.

LO_SPEC,
HI_SPEC

The specification limits are set in the first PTR and should never change. They use the
same scaling and format strings as the corresponding test limits.

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 49

Main Menu

Location: Under normal circumstances, the PTR can appear anywhere in the data stream after
the corresponding Part Information Record (PIR) and before the corresponding Part
Result Record (PRR).

In addition, to facilitate conversion from STDF V3, if the first PTR for a test contains
default information only (no test results), it may appear anywhere after the initial
sequence (see page 14), and before the first corresponding PTR, but need not appear
between a PIR and PRR.

Possible Use: Datalog
Histogram
Wafer Map

Storing and Displaying Parametric Test Data:

The values stored as RESULT, LO_LIMIT, HI_LIMIT, LO_SPEC, and HI_SPEC are all normalized to the base
unit stored as UNITS. The UNITS text string indicates base (whole) units only, with no scaling factor: for
example, UNITS may be “AMPS” or “VOLTS” but never “uAMPS” or “mVOLTS”. Therefore, the UNITS value
provides enough information to represent the stored result or limit. In addition, because of this
normalization, arithmetic can be performed directly on any values for which the UNITS fields agree.

In displaying a result or limit, however, it is sometimes desirable to use a scale other than the base
units: for example, “uAMPS” rather than “AMPS”. It is also desirable to indicate the precision to which
the value was measured. Scaling and precision are indicated by using additional fields.

Scaling uses the RES_SCAL, LLM_SCAL and HLM_SCAL fields. The _SCAL value is an integer that
indicates the power of ten of the scaling factor:

scaled result = RESULT * (10 ** RES_SCAL)
scaled low limit = LO_LIMIT * (10 ** LLM_SCAL)
scaled high limit = HI_LIMIT * (10 ** HLM_SCAL)

STDF Record Types Parametric Test Record (PTR)

STDF Specification V4 Page 50

Main Menu

Storing and Displaying Parametric Test Data (continued):

The _SCAL value also serves as a code that indicates the prefix to be added to the UNITS value in order
to obtain the correctly scaled units. The meaning of the codes is given in the following table, which
defines the recognized values for the RES_SCAL, HLM_SCAL, and LLM_SCAL fields:

_SCAL value UNITS Prefix Meaning Magnitude

15 f femto 10**-15
12 p pico 10**-12
9 n nano 10**-9
6 u micro 10**-6
3 m milli 10**-3
2 % percent 10**-2
0 10**0

-3 K Kilo 10**3
-6 M Mega 10**6
-9 G Giga 10**9

-12 T Tera 10**12

For example, if UNITS is AMPS and RES_SCAL is 6, the display units are uAMPS.

In order to display a result or limit, the C_RESFMT, C_LLMFMT, and C_HLMFMT fields may be used as
appropriate. These provide an ANSI C compatible format string for displaying the result or limit. This
string should provide all the information necessary to output the string with the correct precision using
a format compatible with the data being collected.

For example, to store the result value “123.45 uAMPS,” make the following assignments:

RESULT 123.4517*10**(-6) (trailing “17” is rounding error)
RES_SCAL 6 (“micro” has the code 6)
C_RESFMT %7.2f (minimum field width of 7, precision of 2)
UNITS AMPS (the base units)

Again, notice that the RESULT and UNITS alone correctly represent the value, and that RES_SCAL and
C_RESFMT are important only when it comes time to display the result. In this example, to display the
result one would multiply RESULT by 10**6, display two digits to the right of the decimal point in a
total field width of 7, look up the RES_SCAL value of “6” to determine the prefix “u”, and display the
UNITS:

123.45 uAMPS

STDF Record Types Multiple-Result Parametric Record (MPR)

STDF Specification V4 Page 51

Main Menu

Multiple-Result Parametric Record (MPR)

Function: Contains the results of a single execution of a parametric test in the test program
where that test returns multiple values. The first occurrence of this record also
establishes the default values for all semi-static information about the test, such as
limits, units, and scaling. The MPR is related to the Test Synopsis Record (TSR) by test
number, head number, and site number.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (15)
REC_SUB U*1 Record sub-type (15)

TEST_NUM U*4 Test number
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
TEST_FLG B*1 Test flags (fail, alarm, etc.)
PARM_FLG B*1 Parametric test flags (drift, etc.)
RTN_ICNT U*2 Count (j) of PMR indexes See note
RSLT_CNT U*2 Count (k) of returned results See note
RTN_STAT jxN*1 Array of returned states RTN_ICNT = 0
RTN_RSLT kxR*4 Array of returned results RSLT_CNT = 0
TEST_TXT C*n Descriptive text or label length byte = 0
ALARM_ID C*n Name of alarm length byte = 0

OPT_FLAG B*1 Optional data flag See note
RES_SCAL I*1 Test result scaling exponent OPT_FLAG bit 0 = 1
LLM_SCAL I*1 Test low limit scaling exponent OPT_FLAG bit 4 or 6 = 1
HLM_SCAL I*1 Test high limit scaling exponent OPT_FLAG bit 5 or 7 = 1
LO_LIMIT R*4 Test low limit value OPT_FLAG bit 4 or 6 = 1
HI_LIMIT R*4 Test high limit value OPT_FLAG bit 5 or 7 = 1
START_IN R*4 Starting input value (condition) OPT_FLAG bit 1 = 1
INCR_IN R*4 Increment of input condition OPT_FLAG bit 1 = 1
RTN_INDX jxU*2 Array of PMR indexes RTN_ICNT = 0
UNITS C*n Units of returned results length byte = 0
UNITS_IN C*n Input condition units length byte = 0
C_RESFMT C*n ANSI C result format string length byte = 0
C_LLMFMT C*n ANSI C low limit format string length byte = 0
C_HLMFMT C*n ANSI C high limit format string length byte = 0
LO_SPEC R*4 Low specification limit value OPT_FLAG bit 2 = 1
HI_SPEC R*4 High specification limit value OPT_FLAG bit 3 = 1

STDF Record Types Multiple-Result Parametric Record (MPR)

STDF Specification V4 Page 52

Main Menu

Notes on Specific Fields:

Default Data All data beginning with the OPT_FLAG field has a special function in the STDF file. The
first MPR for each test will have these fields filled in. These values will be the default
for each subsequent MPR with the same test number: if a subsequent MPR has a value
for one of these fields, it will be used instead of the default, for that one record only; if
the field is blank, the default will be used.
If the MPR is not associated with a test execution (that is, it contains only default
information), bit 4 of the TEST_FLG field must be set, and the PARM_FLG field must be
zero.
Unless the default is being overridden, the default data fields should be omitted in
order to save space in the file.
Note that RES_SCAL, LLM_SCAL, HLM_SCAL, UNITS, C_RESFMT, C_LLMFMT, and
C_HLMFMT are interdependent. If you are overriding the default value of one, make
sure that you also make appropriate changes to the others in order to keep them
consistent.
For character strings, you can override the default with a null value by setting the
string length to 1 and the string itself to a single binary 0.

TEST_NUM The test number does not implicitly increment for successive values in the result array.

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing, and does not have a standard way of
identifying its single test site or head, these fields should be set to 1.
When parallel testing, these fields are used to associate individual datalogged results
with a PIR/PRR pair. An MPR belongs to the PIR/PRR pair having the same values for
HEAD_NUM and SITE_NUM.

TEST_FLG Contains the following fields:

bit 0: 0 = No alarm
1 = Alarm detected during testing

bit 1: Reserved for future use. Must be zero.

bit 2: 0 = Test results are reliable
1 = Test results are unreliable

bit 3: 0 = No timeout
1 = Timeout occurred

bit 4: 0 = Test was executed
1 = Test not executed

bit 5: 0 = No abort
1 = Test aborted

bit 6: 0 = Pass/fail flag (bit 7) is valid
1 = Test completed with no pass/fail indication

bit 7: 0 = Test passed
1 = Test failed

STDF Record Types Multiple-Result Parametric Record (MPR)

STDF Specification V4 Page 53

Main Menu

PARM_FLG Is the parametric flag field, and contains the following bits:

bit 0: 0 = No scale error
1 = Scale error

bit 1: 0 = No drift error
1 = Drift error (unstable measurement)

bit 2: 0 = No oscillation
1 = Oscillation detected

bit 3: 0 = Measured value not high
1 = Measured value higher than high test limit

bit 4: 0 = Measured value not low
1 = Measured value lower than low test limit

bit 5: 0 = Test failed or test passed standard limits
1 = Test passed alternate limits

bit 6: 0 = If result = low limit, then result is “fail.”
1 = If result = low limit, then result is “pass.”

bit 7: 0 = If result = high limit, then result is “fail.”
1 = If result = high limit, then result is “pass.”

RTN_ICNT,
RTN_INDX,
RTN_STAT

The number of element in the RTN_INDX and RTN_STAT arrays is determined by the
value of RTN_ICNT. The RTN_STAT field is stored 4 bits per value. The first value is
stored in the low order 4 bits of the byte. If the number of indexes is odd, the high order
4 bits of the last byte in RTN_STAT will be padded with zero. The indexes referred to in
the RTN_INDX are the PMR indexes defined in the Pin Map Record (PMR). The return
state codes are the same as those defined for the RTN_STAT field in the FTR.
RTN_ICNT may be omitted if it is zero and it is the last field in the record.

RSLT_CNT,
RTN_RSLT

RSLT_CNT defines the number of parametric test results in the RTN_RSLT. If this is a
multiple pin measurement, and if PMR indexes will be specified, then the value of
RSLT_CNT should be the same as RTN_ICNT. RTN_RSLT is an array of the parametric
test result values.
RSLT_CNT may be omitted if it is zero and it is the last field in the record.

ALARM_ID If the alarm flag (bit 0 of TEST_FLG) is set, this field can contain the name or ID of the
alarms that were triggered. Alarm names are tester-dependent.

STDF Record Types Multiple-Result Parametric Record (MPR)

STDF Specification V4 Page 54

Main Menu

Frequency: One per multiple-result parametric test execution.

Location: Anywhere in the data stream after the corresponding Part Information Record (PIR)
and before the corresponding Part Result Record (PRR).

Possible Use: Datalog Shmoo Plot

OPT_FLAG Is the Optional Data Flag and contains the following bits:

bit 0 set = RES_SCAL value is invalid. The default set by the first MPR with this test
number will be used.

bit 1 set = START_IN and INCR_IN are invalid.

bit 2 set = No low specification limit.

bit 3 set = No high specification limit.

bit 4 set = LO_LIMIT and LLM_SCAL are invalid. The default values set for these fields
in the first MPR with this test number will be used.

bit 5 set = HI_LIMIT and HLM_SCAL are invalid. The default values set for these fields
in the first MPR with this test number will be used.

bit 6 set = No Low Limit for this test (LO_LIMIT and LLM_SCAL are invalid).

bit 7 set = No High Limit for this test (HI_LIMIT and HLM_SCAL are invalid).
The OPT_FLAG field may be omitted if it is the last field in the record.

START_IN,
INCR_IN,
UNITS_IN

For logging shmoo data, these fields specify the input conditions. START_IN is the
beginning input value and INCR_IN is the increment, in UNITS_IN units. The input is
applied and the output measured RSLT_CNT number of times. Values for INCR_IN can
be positive or negative.

LO_LIMIT,
HI_LIMIT,
UNITS

Regardless of how many test measurements are made, all must use the same limits,
units, scaling, and significant digits.

C_RESFMT,
C_LLMFMT,
C_HLMFMT

ANSI C format strings for use in formatting the test result and low and high limits
(both test and spec). For example, “%7.2f”.The format string is also known as an output
specification string, as used with the printf statement. See any ANSI C reference man,
or the man page on printf.

LO_SPEC,
HI_SPEC

The specification limits are set in the first MPR and should never change. They use the
same scaling and format strings as the corresponding test limits.

STDF Record Types Functional Test Record (FTR)

STDF Specification V4 Page 55

Main Menu

Functional Test Record (FTR)

Function: Contains the results of the single execution of a functional test in the test program. The
first occurrence of this record also establishes the default values for all semi-static
information about the test. The FTR is related to the Test Synopsis Record (TSR) by test
number, head number, and site number.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (15)
REC_SUB U*1 Record sub-type (20)

TEST_NUM U*4 Test number
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
TEST_FLG B*1 Test flags (fail, alarm, etc.)
OPT_FLAG B*1 Optional data flag See note
CYCL_CNT U*4 Cycle count of vector OPT_FLAG bit 0 = 1
REL_VADR U*4 Relative vector address OPT_FLAG bit 1 = 1
REPT_CNT U*4 Repeat count of vector OPT_FLAG bit 2 = 1
NUM_FAIL U*4 Number of pins with 1 or more failures OPT_FLAG bit 3 = 1
XFAIL_AD I*4 X logical device failure address OPT_FLAG bit 4 = 1
YFAIL_AD I*4 Y logical device failure address OPT_FLAG bit 4 = 1
VECT_OFF I*2 Offset from vector of interest OPT_FLAG bit 5 = 1
RTN_ICNT U*2 Count (j) of return data PMR indexes See note
PGM_ICNT U*2 Count (k) of programmed state indexes See note
RTN_INDX jxU*2 Array of return data PMR indexes RTN_ICNT = 0
RTN_STAT jxN*1 Array of returned states RTN_ICNT = 0
PGM_INDX kxU*2 Array of programmed state indexes PGM_ICNT = 0
PGM_STAT kxN*1 Array of programmed states PGM_ICNT = 0
FAIL_PIN D*n Failing pin bitfield length bytes = 0
VECT_NAM C*n Vector module pattern name length byte = 0
TIME_SET C*n Time set name length byte = 0
OP_CODE C*n Vector Op Code length byte = 0
TEST_TXT C*n Descriptive text or label length byte = 0
ALARM_ID C*n Name of alarm length byte = 0
PROG_TXT C*n Additional programmed information length byte = 0
RSLT_TXT C*n Additional result information length byte = 0

PATG_NUM U*1 Pattern generator number 255
SPIN_MAP D*n Bit map of enabled comparators length byte = 0

STDF Record Types Functional Test Record (FTR)

STDF Specification V4 Page 56

Main Menu

Notes on Specific Fields:

Default Data All data starting with the PATG_NUM field has a special function in the STDF file. The
first FTR for each test will have these fields filled in. These values will be the default
for each subsequent FTR with the same test number. If a subsequent FTR has a value
for one of these fields, it will be used instead of the default, for that one record only. If
the field is blank, the default will be used. This method replaces use of the FDR in STDF
V3.
Unless the default is being overridden, the default data fields should be omitted in
order to save space in the file.

HEAD_NUM,
SITE_NUM

If a test system does not support parallel testing, and does not have a standard way of
identifying its single test site or head, these fields should be set to 1.
When parallel testing, these fields are used to associate individual datalogged results
with a PIR/PRR pair. An FTR belongs to the PIR/PRR pair having the same values for
HEAD_NUM and SITE_NUM.

TEST_FLG Contains the following fields:

bit 0: 0 = No alarm
1 = Alarm detected during testing

bit 1: Reserved for future use — must be 0

bit 2: 0 = Test result is reliable
1 = Test result is unreliable

bit 3: 0 = No timeout
1 = Timeout occurred

bit 4: 0 = Test was executed
1 = Test not executed

bit 5: 0 = No abort
1 = Test aborted

bit 6: 0 = Pass/fail flag (bit 7) is valid
1 = Test completed with no pass/fail indication

bit 7: 0 = Test passed
1 = Test failed

OPT_FLAG Contains the following fields:

bit 0 set = CYCL_CNT data is invalid
bit 1 set = REL_VADR data is invalid
bit 2 set = REPT_CNT data is invalid
bit 3 set = NUM_FAIL data is invalid
bit 4 set = XFAIL_AD and YFAIL_AD data are invalid
bit 5 set = VECT_OFF data is invalid (offset defaults to 0)
bits 6 - 7 are reserved for future use and must be 1
This field is only optional if it is the last field in the record.

STDF Record Types Functional Test Record (FTR)

STDF Specification V4 Page 57

Main Menu

XFAIL_AD,
YFAIL_AD

The logical device address produced by the memory pattern generator, before going
through conversion to a physical memory address. This logical address can be different
from the physical address presented to the DUT pins.

VECT_OFF This is the integer offset of this vector (in sequence of execution) from the vector of
interest (usually the failing vector). For example, if this FTR contains data for the
vector before the vector of interest, this field is set to -1. If this FTR contains data for
the third vector after the vector of interest, this field is set to 3. If this FTR is the vector
of interest, VECT_OFF is set to 0. It is therefore possible to record an entire sequence of
vectors around a failing vector for use with an offline debugger or analysis program.

RTN_ICNT,
PGM_ICNT

These fields may be omitted if all data following them is missing or invalid.

RTN_ICNT,
RTN_INDX,
RTN_STAT

The size of the RTN_INDX and RTN_STAT arrays is determined by the value of RTN_ICNT.
The RTN_STAT field is stored 4 bits per value. The first value is stored in the low order
4 bits of the byte. If the number of indexes is odd, the high order 4 bits of the last byte
in RTN_STAT will be padded with zero. The indexes referred to in the RTN_INDX are
those defined in the PMR.

RTN_STAT The table of valid returned state values (expressed as hexadecimal digits) is:

0 = 0 or low
1 = 1 or high
2 = midband
3 = glitch
4 = undetermined
5 = failed low
6 = failed high
7 = failed midband
8 = failed with a glitch
9 = open
A = short

The characters generated to represent these values are tester-dependent, and are
specified in the PLR.

PGM_ICNT,
PGM_INDX,
PGM_STAT

The size of the PGM_INDX and PGM_STAT arrays is determined by the value of
PGM_ICNT. The indexes referred to in the PGM_INDX are those defined in the PMR.

STDF Record Types Functional Test Record (FTR)

STDF Specification V4 Page 58

Main Menu

PGM_STAT The table of valid program state values (expressed in hexadecimal) is listed below. Note
that there are three defined program modes: Normal, Dual Drive (two drive bits per
cycle), and SCIO (same cycle I/O).
The characters generated to represent these values are tester-dependent, and are
specified in the PLR.

Normal Mode Program States Typical State Representation

0 = Drive Low 0
1 = Drive High 1
2 = Expect Low L
3 = Expect High H
4 = Expect Midband M
5 = Expect Valid (not midband) V
6 = Don't drive, or compare. X
7 = Keep window open from prior cycle. W

(used to “stretch” a comparison across cycles)

Dual Drive Mode Program States Typical State Representations

0 = Low at D2, Low at D1 times 00 0
1 = Low at D2, High at D1 times 10 1
2 = Hi at D2, Low at D1 times 01 2
3 = Hi at D2, High at D1 times 11 3
4 = Compare Low L
5 = Compare High H
6 = Compare Midband M
7 = Don't Compare X

SCIO Mode Program States Typical State Representations

0 = Drive Low, Compare Low. 0L l
1 = Drive Low, Compare High 0H h
2 = Drive Low, Compare Midband 0M m
3 = Drive Low, Don't Compare 0X x
4 = Drive High, Compare Low. 1L L
5 = Drive High, Compare High 1H H
6 = Drive High, Compare Midband 1M M
7 = Drive High, Don't Compare 1X X

FAIL_PIN Encoded with PMR index 0 in bit 0 of the field, PMR index 1 in the 1st position, and so
on. Bits representing PMR indexes of failing pins are set to 1.

STDF Record Types Functional Test Record (FTR)

STDF Specification V4 Page 59

Main Menu

Frequency: One or more for each execution of a functional test.

Location: Anywhere in the data stream after the corresponding Part Information Record (PIR)
and before the corresponding Part Result Record (PRR).

Possible Use: Datalog Functional Histogram
Functional Failure Analyzer

ALARM_ID If the alarm flag (bit 0 of TEST_FLG) is set, this field can optionally contain the name or
ID of the alarm or alarms that were triggered. The names of these alarms are
tester-dependent.

SPIN_MAP This field contains an array of bits corresponding to the PMR index numbers of the
enabled comparators. The 0th bit corresponds to PMR index 0, the 1st bit corresponds
to PMR index 1, and so on. Each comparator that is enabled will have its corresponding
PMR index bit set to 1.

STDF Record Types Begin Program Section Record (BPS)

STDF Specification V4 Page 60

Main Menu

Begin Program Section Record (BPS)

Function: Marks the beginning of a new program section (or sequencer) in the job plan.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (20)
REC_SUB U*1 Record sub-type (10)

SEQ_NAME C*n Program section (or sequencer) name length byte = 0

Frequency: Optional on each entry into the program segment.

Location: Anywhere after the PIR and before the PRR.

Possible Use: When performing analyses on a particular program segment’s test.

STDF Record Types End Program Section Record (EPS)

STDF Specification V4 Page 61

Main Menu

End Program Section Record (EPS)

Function: Marks the end of the current program section (or sequencer) in the job plan.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (20)
REC_SUB U*1 Record sub-type (20)

Frequency: Optional on each exit from the program segment.

Location: Following the corresponding BPS and before the PRR in the data stream.

Possible Use:
When performing analyses on a particular program segment’s test.

Note that pairs of BPS and EPS records can be nested: for example, when one sequencer
calls another. In this case, the sequence of records could look like this:

BPS SEQ_NAME = sequence-1
BPS SEQ_NAME = sequence-2
EPS (end of sequence-2)
EPS (end of sequence-1)

Because an EPS record does not contain the name of the sequencer, it should be
assumed that each EPS record matches the last unmatched BPS record.

STDF Record Types Generic Data Record (GDR)

STDF Specification V4 Page 62

Main Menu

Generic Data Record (GDR)

Function: Contains information that does not conform to any other record type defined by the
STDF specification. Such records are intended to be written under the control of job
plans executing on the tester. This data may be used for any purpose that the user
desires.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (50)
REC_SUB U*1 Record sub-type (10)

FLD_CNT U*2 Count of data fields in record
GEN_DATA V*n Data type code and data for one field

(Repeat GEN_DATA for each data field)

Notes on Specific Fields:

GEN_DATA Is repeated FLD_CNT number of times. Each GEN_DATA field consists of a data type code
followed by the actual data. The data type code is the first unsigned byte of the field.
Valid data types are:

0 = B*0 Special pad field, of length 0 (See note below)
1 = U*1 One byte unsigned integer
2 = U*2 Two byte unsigned integer
3 = U*4 Four byte unsigned integer
4 = I*1 One byte signed integer
5 = I*2 Two byte signed integer
6 = I*4 Four byte signed integer
7 = R*4 Four byte floating point number
8 = R*8 Eight byte floating point number
10 = C*n Variable length ASCII character string

(first byte is string length in bytes)
11 = B*n Variable length binary data string

(first byte is string length in bytes)
12 = D*n Bit encoded data

(first two bytes of string are length in bits)
13 = N*1 Unsigned nibble

STDF Record Types Generic Data Record (GDR)

STDF Specification V4 Page 63

Main Menu

Pad Field (Data Type 0):
Data type 0, the special pad field, is used to force alignment of following data types in
the record. In particular, it must be used to ensure even byte alignment of U*2, U*4,
I*2, I*4, R*4, and R*8 data types.

The GDR is guaranteed to begin on an even byte boundary. The GDR header contains
four bytes. The first GEN_DATA field therefore begins on an even byte boundary. It is
the responsibility of the designer of a GDR record to provide the pad bytes needed to
ensure data boundary alignment for the CPU on which it will run.

Example: The following table describes a sample GDR that contains three data fields of different
data types. The assumption is that numeric data of more than one byte must begin on
an even boundary. Pad bytes will be used to meet this requirement.

Data Code Alignment Requirement

"AB" 10 A variable-length character string can begin on any byte. This field
will contain one data byte, one length byte, and two data bytes, for
a total length of 4 bytes. Because this field begins on an even byte,
the next field also begins on an even byte.

255 1 A one-byte numeric value can begin on any byte. This field contains
two bytes, so the next field also begins on an even byte.

510 5 A two-byte numeric value must begin on an even byte. This
GEN_DATA field would begin on an even byte; and, because the first
byte is the data code, the actual numeric value would begin on an
odd byte. This field must therefore be preceded by a pad byte.

The byte representation for this GDR is as follows. The byte ordering shown here is for
sample purposes only. The actual data representation differs between CPUs. The byte
values are shown in hexadecimal. The decimal equivalents are given in the description
of the bytes.

Even Byte Odd Byte Description (with Decimal Values)

0c 00 Number of bytes following the header (12)
32 0a Record type (50); record subtype (10)
04 00 Number of data fields (4)
0a 02 Character string: code (10) and length (2)
41 42 Character string: data bytes (“A” and “B”)
01 ff 1-byte integer: code (1) and data (255 = 0xff)
00 05 Pad byte (0); code (5) for next field
fe 01 2-byte signed integer (510 = 0x01fe)

Frequency: A test data file may contain any number of GDRs.

Location: Anywhere in the data stream after the initial sequence (see page 14).

Possible Use: User-written reports

STDF Record Types Datalog Text Record (DTR)

STDF Specification V4 Page 64

Main Menu

Datalog Text Record (DTR)

Function: Contains text information that is to be included in the datalog printout. DTRs may be
written under the control of a job plan: for example, to highlight unexpected test
results. They may also be generated by the tester executive software: for example, to
indicate that the datalog sampling rate has changed. DTRs are placed as comments in
the datalog listing.

Data Fields:

Field Data Field Missing/Invalid
Name Type Description Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (50)
REC_SUB U*1 Record sub-type (30)

TEXT_DAT C*n ASCII text string

Frequency: A test data file may contain any number of DTRs.

Location: Anywhere in the data stream after the initial sequence (see page 14).

Possible Use: Datalog

STDF Filenames

STDF Specification V4 Page 65

Main Menu

STDF Filenames

An STDF file name must have the following format:

filename.STD[string]

where

filename Is any string consisting of 1 to 39 of the ASCII characters A - Z, a - z, and 0 - 9, plus
the underscore (_). The first character must be alphabetic. Users should be aware
that, while some operating systems distinguish between uppercase and lowercase
characters, most do not.

.STD[string] Is a string beginning with the characters .STD, and continuing with characters that
are legal for filename. The string cannot be longer than 39 characters. Under systems
that support file extensions, this is the file extension. Under system that do not, it is
considered to be a fixed literal string. For systems that distinguish between
uppercase and lowercase characters, this string should be in lowercase (.std).

Note these points:

• In previous versions of the specification, the dollar sign ($) was a legal filename character. It
is no longer supported, because its use is incompatible with certain operating systems.

• The STDF filename can contain only a single period. Software that processes STDF files may
check for an extension, which is defined as the string after the first period. Many operating
systems permit only one period per filename.

(continued)

STDF Filenames

STDF Specification V4 Page 66

Main Menu

• Use only the characters defined as legal for filename. This restricted set is intended to be
compatible with as many operating systems and software packages as possible. Using other
characters may have unforeseen consequences: for example, some data analysis software may
not accept a filename containing a character that you used.

• It is strongly recommended that you use only .STD, without any additional string for the
extension. If you must add additional characters, add as few as possible. Software that
processes STDF files may add characters to the .STD extension to indicate the state of
processing. To avoid exceeding system-specific limits, it is best if the original filename
extension is as short as possible, i.e., .STD.

• Some software that processes STDF files retains only the part of the filename to the left of the
period (the filename part, not the .STD extension part). It is therefore recommended that the
filename to the left of the period be unique, to ensure that the names remain unique after other
software has processed the file.

The goals for choosing your STDF file names should be as follows:

• to provide unique file names throughout a system

• to indicate the data contained in the file

• to indicate when the test data was generated

• to provide some level of customer control

• to work on a variety of computer systems

STDF File Ordering

STDF Specification V4 Page 67

Main Menu

STDF File Ordering

Test data collected by testers is usually written directly to files in STDF format. Each STDF file
contains the test data for one lot of parts. To make the data management software efficient and
reliable, it is important that all the raw test data for a single insertion of a single lot be stored in one
STDF data file.

The STDF test data file must contain one FAR, one MIR, at least one PCR, and one MRR. All other records
are optional. The file may therefore contain any combination of datalog, summary, and site summary
for that lot of parts.

Data records in the STDF file may be arranged in a variety of ways. The following factors can affect
the record ordering:

• whether wafers are being tested

• whether parallel testing is in effect

• whether test description records are being used

• whether datalogging is in effect

The following pages show different ways in which the STDF format can be used to store test data.

STDF File Ordering

STDF Specification V4 Page 68

Main Menu

1. For a lot of packaged devices:

Global information for the fileFAR
Global information for entire lotMIR

Testing each part:

Information on first tested partPIR
Results of first test on first part.................................. PTR/MPR/FTR

.

.
Results of final test on first part PTR/MPR/FTR

Final results on first tested partPRR

Information on second tested partPIR
Repeat test suite for second part................................. PTR/MPR/FTR

.

.
Final results on second tested part.............................PRR

Repeat sequence for each tested part.........................PIR
.
.
.

PRR

Final results for entire lot:

Summary (count of test executions, countTSR
of failed parts, etc.) for each test in job .
plan (one TSR per test in plan) .

TSR

Count of parts placed in each hardware binHBR
(one HBR per hardware bin) .

.
HBR

Count of parts assigned to each logical binSBR
(one SBR per software bin) .

.
SBR

Part count totals for lot ..PCR
Global summary of results for entire lot............MRR

STDF File Ordering

STDF Specification V4 Page 69

Main Menu

2. For a lot of devices for which only summary information is required:

Global information for the fileFAR
Global information for entire lotMIR

Final results for entire lot:

Summary (count of test executions, countTSR
of failed parts, etc.) for each test in job .
plan (one TSR per test in plan) .

TSR

Count of parts placed in each hardware binHBR
(one HBR per hardware bin) .

.
HBR

Count of parts assigned to each logical binSBR
(one SBR per software bin) .

.
SBR

Part count totals for lot ..PCR
Global summary of results for entire lot............MRR

STDF File Ordering

STDF Specification V4 Page 70

Main Menu

3. For a lot of devices at wafer probe:

Global information for the fileFAR
Global information for entire lotMIR
Dimensions and orientation of waferWCR

Testing each wafer:

Information for first wafer ...WIR
Information for first die .. PIR

Perform test suite on first die.......................................PTR/MPR/FTR
.
.

Final results of test suite on first die PRR

Repeat for each die of first wafer PIR
PTR/MPR/FTR

.

.
PRR

Test results summary for dice of first waferWRR

Repeat sequence for each remaining waferWIR
.
.

WRR

Final results for entire lot:

Summary (count of test executions, countTSR
of failed parts, etc.) for each test in job .
plan (one TSR per test in plan) .

TSR

Count of dice placed in each hardware binHBR
(one HBR per hardware bin) .

.
HBR

Count of dice placed in each logical binSBR
(one SBR per software bin) .

.
SBR

Part count totals for lot ..PCR
Global summary of results for entire lot............MRR

STDF File Ordering

STDF Specification V4 Page 71

Main Menu

4. For a lot of devices, storing only information necessary to generate a wafer map:

Global information for the fileFAR
Global information for entire lotMIR
Dimensions and orientation of waferWCR

Testing each wafer:

Information for wafer ..WIR
Information for first die .. PIR
Final results of test suite on first die PRR

Repeat for each remaining die PIR
PRR

.

.
Test results summary for all dice of waferWRR

Repeat sequence for remaining wafersWIR
.
.

WRR

Final results for entire lot:

Summary (count of test executions, countTSR
of failed parts, etc.) for each test in job .
plan (one TSR per test in plan) .

TSR

Count of dice placed in each hardware binHBR
(one HBR per hardware bin) .

.
HBR

Count of dice placed in each logical binSBR
(one SBR per software bin) .

.
SBR

Part count totals for lot ..PCR
Global summary of results for entire lot............MRR

STDF File Ordering

STDF Specification V4 Page 72

Main Menu

5. For a lot of devices tested at wafer probe on a parallel tester
(two test heads, two sites per head):

Global information for the fileFAR
Global information for entire lotMIR
Dimensions and orientation of waferWCR

Testing first two wafers (one per test head):

Information for first wafer (head 1)WIR, head 1
Information for second wafer (head 2)WIR, head 2

Beginning of first die ... PIR, head 1 site 1
Beginning of second die ... PIR, head 1 site 2
Beginning of third die .. PIR, head 2 site 1
Beginning of fourth die.. PIR, head 2 site 2

First test on first die ...PTR/MPR/FTR, head 1 site 1
First test on second die ..PTR/MPR/FTR, head 1 site 2
First test on third die ...PTR/MPR/FTR, head 2 site 1
First test on fourth die ...PTR/MPR/FTR, head 2 site 2

Second test on first die ...PTR/MPR/FTR, head 1 site 1
Second test on second die ..PTR/MPR/FTR, head 1 site 2
Second test on third die ...PTR/MPR/FTR, head 2 site 1
Second test on fourth die ...PTR/MPR/FTR, head 2 site 2

Repeat test suite on all four dicePTR/MPR/FTR ...
.
.

Test suite finishes first on second die; PRR, head 1 site 2
this PRR has results of all tests on this die.

Finish test suite on remaining three dicePTR/MPR/FTR, head 1 site 1
PTR/MPR/FTR, head 2 site 1
PTR/MPR/FTR, head 2 site 2

.

.
Results of all tests on first die PRR, head 1 site 1
Results of all tests on third die.................................... PRR, head 2 site 1
Results of all tests on fourth die PRR, head 2 site 2

Repeat sequence for next set of four dice PIR ...
.
.

PRR ...

(continued)

STDF File Ordering

STDF Specification V4 Page 73

Main Menu

5. For a lot of devices tested at wafer probe on a parallel tester (continued):

Information for final four dice PIR, head 1 site 1
PIR, head 1 site 2
PIR, head 2 site 1
PIR, head 2 site 2

Perform each test on each die.......................................PTR/MPR/FTR ...
.
.

Test suite finishes on first and second dice; PRR, head 1 site 1
all tests now complete on head 1 dice PRR, head 1 site 2

Test results for all dice of head 1 waferWRR, head 1

Perform remaining tests on head 2 dice.....................PTR/MPR/FTR, head 2 site 1
PTR/MPR/FTR, head 2 site 2

.

.
Test suite finishes on third and fourth dice; PRR, head 2 site 1

all tests now complete on head 2 dice PRR, head 2 site 2

Test results for all dice of head 2 waferWRR, head 2

Testing remaining wafers:

Repeat sequence for each set of wafersWIR, head 1
WIR, head 2

.

.
Test results for all dice of next wafersWRR, head 1

WRR, head 2

(continued)

STDF File Ordering

STDF Specification V4 Page 74

Main Menu

5. For a lot of devices tested at wafer probe on a parallel tester (continued):

Final results for entire lot:

Summary (count of test executions, countTSR
of failed parts, etc.) for each test in job .
plan (one TSR per test in plan) .

Count of dice placed in each hardware binHBR
(one HBR per hardware bin) .

.

Count of dice assigned to each logical binSBR
(one SBR per software bin) .

.
Part count for head 1, site 1 ...PCR
Part count for head 1, site 2 ...PCR
Part count for head 2, site 1 ...PCR
Part count for head 2, site 2 ...PCR
Part count for entire lot (HEAD_NUM = 255)..............PCR

Global summary of results for entire lot...........MRR

Storing Repair Information

STDF Specification V4 Page 75

Main Menu

Storing Repair Information

Data for repair of memory, PC boards, and other parts can be stored and passed between the test and
repair processes using the STDF format. The repair information for each part tested is stored in the
PART_FIX field in the Part Results Record (PRR).

It is possible to keep repair data in the same STDF file as all the other test information or to separate
it out in order to minimize the number of bytes passed from one process to the next. The following
examples are intended to provide additional help in understanding how the STDF records are used in
storing repair information. Additional STDF records may be used in the file for more information as
desired.

Storing Repair Information

STDF Specification V4 Page 76

Main Menu

The following is the ordering of the minimum records required for an STDF file containing memory
repair data from wafer probe:

File Attributes Record..FAR
Master Information Record...MIR

Wafer information for 1st waferWIR
Part results for 1st device on wafer............................ PRR
Part results for 2nd device on wafer PRR

.

.
Part results for last device on wafer PRR

Wafer results for 1st wafer ...WRR

.

.
Wafer information for last wafer.................................WIR

Part results for 1st device on wafer............................ PRR
Part results for 2nd device on wafer PRR

.

.
Part results for last device on wafer PRR

Wafer results for last wafer..WRR
Part Count Record ..PCR
Master Results Record ...MRR

The following is the ordering of the minimum records required for an STDF file containing PC board
repair data from a board tester:

File Attributes Record..FAR
Master Information Record...MIR

Part results for 1st PC boardPRR
Part results for 2nd PC boardPRR

.

.
Part results for last PC boardPRR

Part Count Record ..PCR
Master Results Record ...MRR

Using the Pin Mapping Records

STDF Specification V4 Page 77

Main Menu

Using the Pin Mapping Records

When testing devices, either packaged or as part of a wafer, there is a mapping between device pins
and tester channels. This mapping is defined in the Pin Map Record (PMR). Each channel will have
a type and a name. Each pin will have a physical and a logical name. The PMR defines one unique
association between a channel and a pin and assigns that mapping a number, known as the PMR Index.
These indexes are in the range 1 -32,767.

Pins are sometimes defined in groups, such as address pins, or data pins. The Pin Group Record
(PGR) allows a group of pins to be named and given a group index number. The PGR lists the PMR
Indexes for the pins in a pin group and assigns a name and a Group Index number to that group. Group
index numbers are in the range 32-768 - 65,535.

For any pin group, there is a display radix and an operating mode. For groups of pins that are
multiplexed (i.e., that serve multiple functions at different times), there may be more than one set of
radixes and operating modes. Depending on the tester type and potentially the device type, there may
also be different data representations for those modes. The Pin List Record (PLR) defines a mapping
between one or more pins (by Pin Index) and/or pin groups (by Group Index) and their corresponding
display radixes and operating modes. It also defines the programmed-state and returned-state
character representations for those pins.

Both the Functional Test Record (FTR) and the Multiple-Result Parametric Record (MPR) use the Pin
Indexes defined in the PMR to associate state information with their corresponding pins. Both
programmed states and returned states can be decoded and displayed using information from the
PMRs, PGRs, and PLRs associated with the Pin Indexes listed in the FTRs and MPRs.

Using the Pin Mapping Records

STDF Specification V4 Page 78

Main Menu

Software that decodes and displays functional test data will use the Pin Index mapping in the FTRs
and MPRs to determine which pins had what values. The software can use the PMR to determine the
physical and logical name of the pin, the channel name and type associated with that pin, and which
test head and site that channel is connected to. Using data from the PGR, the software will be able to
determine whether the pin is part of a pin group and, if so, what the group name is and what other pins
are part of that group. Data from the PLR will then be able to tell the software how data associated with
that pin should be displayed to make it understandable to engineers and programmers dealing with
that type of tester and device.

Differences Between STDF V3 and V4

STDF Specification V4 Page 79

Main Menu

Differences Between STDF V3 and V4

Since its introduction in 1985, Teradyne’s Standard Test Data Format (STDF) has gained wide-spread
acceptance, so much so that it has become a de facto standard in the ATE industry. In using STDF over
the years, customers have found that it meets many of their data needs. Inevitably, however, their
intensive use of STDF revealed places where they needed additional fields or different structures.

Teradyne has listened to these customers, and has collected nearly one hundred requests and
comments from twenty-two customers and six ATE vendors, as well as its own engineers who have
been using STDF. The result is the first new version of STDF in years: STDF Version 4.

This section summarizes the differences between STDF V3 and V4. It first lists the record types of the
two versions. It then lists the changes to the data types used in defining the STDF records. Finally, it
lists the changes to each STDF record type, and indicates which record types have remained
unchanged.

For details on any of these differences, see the rest of the STDF specification.

Differences Between STDF V3 and V4 Record Types

STDF Specification V4 Page 80

Main Menu

Record Types

The following table shows all of the V3 and V4 record types. Codes in regular font are in both V3 and
V4. Codes in bold are new in V4. Codes in italic are in V3, but have been dropped from V4.

REC_TYP Meaning and STDF REC_SUB Code

0 Information about the STDF file
10 File Attributes Record (FAR)
20 Audit Trail Record (ATR) – New

1 Data collected on a per lot basis
10 Master Information Record (MIR)
20 Master Results Record (MRR)
30 Part Count Record (PCR) – New
40 Hardware Bin Record (HBR)
50 Software Bin Record (SBR)
60 Pin Map Record (PMR)
62 Pin Group Record (PGR) – New
63 Pin List Record (PLR) – New
70 Retest Data Record (RDR) – New
80 Site Description Record (SDR) – New

2 Data collected per wafer
10 Wafer Information Record (WIR)
20 Wafer Results Record (WRR)
30 Wafer Configuration Record (WCR)

5 Data collected on a per part basis
10 Part Information Record (PIR)
20 Part Results Record (PRR)

10 Data collected per test in the test program
10 Parametric Test Description Record (PDR) – Dropped
20 Functional Test Description Record (FDR) – Dropped
30 Test Synopsis Record (TSR)

15 Data collected per test execution
10 Parametric Test Record (PTR)
15 Multiple-Result Parametric Record (MPR) – New
20 Functional Test Record (FTR)

20 Data collected per program segment
10 Begin Program Section Record (BPS)
20 End Program Section Record (EPS)

Differences Between STDF V3 and V4 Data Types

STDF Specification V4 Page 81

Main Menu

Data Types

The following change has been made for V4:

B*n First data item is now in least significant bit of the second byte of the array (first
byte is count.)

The following data types have been added to V4.

D*n Variable length bit-encoded field:
First 2 bytes = unsigned count of bits to follow (max. of 65,535 bits).
First data item in least significant bit of the third byte of the array.
Unused bits at the high order end of the last byte must be zero.

N*1 Unsigned integer data stored in a nibble. (Nibble = 4 bits of a byte).
First item in low 4 bits, second item in high 4 bits.
For an odd number of nibbles, the high nibble of the byte will be zero. Only whole
bytes can be written to the STDF file.

kxTYPE Array of data of the type specified.
The value of ‘k’ (the number of elements in the array) is defined in an earlier field.
For example, an array of short unsigned integers is defined as kxU*2.

Filename Characters

The dollar sign ($) is no longer a valid character in an STDF filename. The only valid characters are
the alphanumerics and the underscore (_).

25 Data collected per test site — All Dropped
10 Site-Specific Hardware Bin Record (SHB)
20 Site-Specific Software Bin Record (SSB)
30 Site-Specific Test Synopsis Record (STS)
40 Site-Specific Part Count Record (SCR)

50 Generic Data
10 Generic Data Record (GDR)
30 Datalog Text Record (DTR)

REC_TYP Meaning and STDF REC_SUB Code

Differences Between STDF V3 and V4 Required Records

STDF Specification V4 Page 82

Main Menu

Required Records

Under V3, the only required records in an STDF file were the MIR and MRR.

Under V4, there are four required records:

FAR The first record in the must be the FAR. There is exactly one FAR per file.

MIR There must be exactly one MIR per file. The MIR must follow the FAR and any ATRs
(if they are used).

PCR There must be at least one PCR per file: either one summary PCR (HEAD_NUM =
255), or one PCR per head/site combination, or both. The PCRs must come after the
MIR and before the MRR.

MRR There must be exactly one MRR per file. It must be the final record in the file.

Changes to Specific STDF Record Types

ATR: Audit Trail Record — New in V4

Records any operation (such as a filter program) that alters the contents of the STDF
file. If these records are used, they must immediately follow the FAR.

Data Fields (after header):
MOD_TIM Date and time of STDF file modification
CMD_LINE Command line of program that altered the file

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 83

Main Menu

MIR: Master Information Record

First Record in File:
Under V3, the first record in the STDF file could be an FAR or an MIR.
Under V4, the first record must be an FAR.

MIR Fields Added for V4:
BURN_TIM Burn-in time (in minutes)
EXEC_VER Tester exec software version number
TST_TEMP Test temperature
USER_TXT Generic user text
AUX_FILE Name of auxiliary data file
PKG_TYP Package type
FAMLY_ID Product family ID
DATE_COD Date code
FACIL_ID Test facility ID
FLOOR_ID Test floor ID
OPER_FRQ Operation frequency or step
SPEC_NAM Test specification name
SPEC_VER Test specification version number
FLOW_ID Test flow ID
SETUP_ID Test setup ID
DSGN_REV Device design revision
ENG_ID Engineering lot ID
ROM_COD ROM code ID
SERL_NUM Tester serial number

V3 Fields Dropped From V4:
CPU_TYPE Now only in FAR
STDF_VER Now only in FAR
HAND_ID Moved to SDR (Site Description Record – new in V4)
PRB_CARD Moved to SDR (as CARD_ID)

Other MIR Changes:
MODE_COD New values have been defined for Automatic Edge Lock mode, Checker

mode, and Quality Control.
TEST_COD Under V3, data type was C*3; under V4, data type is C*n. The

Missing/Invalid flag is now length byte = 0.

MRR: Master Results Record

V3 Fields Dropped From V4:
All part count fields have moved to the PCR (Part Count Record, new in V4):

PART_CNT RTST_CNT ABRT_CNT
GOOD_CNT FUNC_CNT

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 84

Main Menu

PCR: Part Count Record — New in V4

Contains the part counts formerly in the MRR and the SCR. If HEAD_NUM = 255, the
counts are for all test sites; otherwise, the counts are for the specified site.

Each STDF file must contain at least one PCR: either one summary PCR
(HEAD_NUM = 255), or one PCR for each head/site combination, or both.

Data Fields (after header):
HEAD_NUM Test head number
SITE_NUM Test site number
PART_CNT Number of parts tested
RTST_CNT Number of parts retested
ABRT_CNT Number of aborts during testing
GOOD_CNT Number of good (passed) parts tested
FUNC_CNT Number of functional parts tested

HBR: Hardware Bin Record

HEAD_NUM and SITE_NUM are added. If HEAD_NUM = 255, the count is for all test sites;
otherwise it is for the specified site. Because of these fields, the V3 SHB (Site-Specific
Hardware Bin Record) is no longer needed.

The new HBIN_PF field indicates whether the bin was passing or failed.

SBR: Software Bin Record

HEAD_NUM and SITE_NUM are added. If HEAD_NUM = 255, the count is for all test sites;
otherwise it is for the specified site. Because of these fields, the V3 SSB (Site-Specific
Software Bin Record) is no longer needed.

The new SBIN_PF field indicates whether the bin was passing or failed.

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 85

Main Menu

PMR: Pin Map Record

The structure and use of the PMR has changed completely for V4. Under V3, the PMR
could define a single channel/pin mapping, or it could define a pin group. Under V4, a
PMR defines a single channel/pin mapping. Two more record types have been added —
PGR (Pin Group Record) and PLR (Pin List Record) — to define aggregates of pins. See
“Using the Pin Mapping Records” on page 77.

V4 Fields:
The PMR is completely redefined under V4. The fields (after the header) are:

PMR_INDX Unique index associated with pin
CHAN_TYP Channel type
CHAN_NAM Channel name
PHY_NAM Physical name of pin
LOG_NAM Logical name of pin
HEAD_NUM Head number associated with channel
SITE_NUM Site number associated with channel

PGR: Pin Group Record — New in V4

Associates a name with a group of pins.

Data Fields (after header):
GRP_INDX Unique index associated with pin group
GRP_NAM Name of pin group
INDX_CNT Count of PMR indexes
PMR_INDX Array of indexes for pins in the group

PLR: Pin List Record — New in V4

Defines the current display radix and operating mode for a list of pins or pin groups.

Data Fields (after header):
GRP_CNT Count of pins or pin groups
GRP_INDX Array of pin or pin group indexes
GRP_MODE Operating mode of pin group
GRP_RADX Display radix of pin group
PGM_CHAR Program state encoding characters
RTN_CHAR Return state encoding characters
PGM_CHAL Program state encoding characters
RTN_CHAL Return state encoding characters

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 86

Main Menu

RDR: Retest Data Record — New in V4

Signals that the data in this STDF file is for retested parts, and indicates what bins
are being retested. This data, combined with information in the MIR, tells data filtering
programs what data to replace when processing retest data.

If this record is used, it must immediately follow the MIR.

Data Fields (after header):
NUM_BINS Number of bins being retested
RTST_BIN Array of retest bin numbers

SDR: Site Description Record — New in V4

A new record type that contains the configuration information for one or more test
sites, connected to one test head, that compose a site group. SITE_GRP is a unique
identifier for the site group defined by the SDR.

If used, SDRs must immediately follow the MIR and any RDR.

Data Fields (after header):
HEAD_NUM Test head number
SITE_GRP Site group number
SITE_CNT Number of test sites in site group
SITE_NUM Array of test site numbers
HAND_TYP Handler or prober type
HAND_ID Handler or prober ID
CARD_TYP Probe card type
CARD_ID Probe card ID
LOAD_TYP Load board type
LOAD_ID Load board ID
DIB_TYP DIB board type
DIB_ID DIB board ID
CABL_TYP Interface cable type
CABL_ID Interface cable ID
CONT_TYP Handler contactor type
CONT_ID Handler contactor ID
LASR_TYP Laser type
LASR_ID Laser ID
EXTR_TYP Extra equipment type field
EXTR_ID Extra equipment ID

WIR: Wafer Information Record

The PAD_BYTE field has been dropped.

The SITE_GRP field has been added, to relate the wafer information to the configuration
of the equipment used to test it (as defined in the SDR).

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 87

Main Menu

WRR: Wafer Results Record

V3 Fields Dropped from V4:
PAD_BYTE
HAND_ID Moved to SDR (identified by SITE_GRP)
PRB_CARD Moved to SDR (identified by SITE_GRP)

Fields Added for V4:
SITE_GRP Site group number
FABWF_ID Fab wafer ID
FRAME_ID Wafer frame ID
MASK_ID Wafer mask ID

Other WRR Changes:
These fields have changed from I*4 to U*4: RTST_CNT, ABRT_CNT, GOOD_CNT, and
FUNC_CNT. Their Missing/Invalid flag is now 4,294,967,295.

WCR: Wafer Configuration Record

The WF_UNITS field has two new valid values, to indicate that units are in millimeters
or in mils. (Previous units were inches and centimeters).

PIR: Part Information Record

Now acts solely as a marker to indicate where testing of a part begins. The fields
dropped from V4 are now only in the PRR.

V3 Fields Dropped from V4:
X_COORD Y_COORD
PART_ID

PRR: Part Results Record

The PAD_BYTE field has been dropped.

The TEST_T field has been added, for the elapsed test time in milliseconds.

Bits 0 and 1 of PART_FLG now indicate whether the entire sequence of PIR, PTR, MPR,
FTR, and PRR records supersedes any previous sequence with the same PART_ID (bit 0)
or X & Y coordinates (bit 1). Under V3, this bit meant that only the PIR/PRR pair was
superseded.

Bit 4 of PART_FLG is now defined to indicate whether the device completed testing with
no pass/fail indication.

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 88

Main Menu

PDR: Parametric Test Description Record — Dropped

The PDR has been dropped from V4. In its place, the first PTR for each test will contain
the semi-static descriptive information for the test.

FDR: Functional Test Description Record — Dropped

The FDR has been dropped from V4. In its place, the first FTR for each test will contain
the semi-static descriptive information for the test.

TSR: Test Synopsis Record

The following fields have been dropped: PAD_BYTE, TST_MEAN, and TST_SDEV.

The data type of the following fields has changed from I*4 to U*4: EXEC_CNT,
FAIL_CNT, and ALRM_CNT. The Missing/Invalid flag for these fields is now
4,294,967,295.

HEAD_NUM and SITE_NUM have been added. If HEAD_NUM = 255, the count is for all test
sites.

TEST_TYP has been added, to specify the kind of test: parametric, functional, or
multiple-result parametric.

TEST_TIM and TEST_LBL have also been added. Bit 2 of OPT_FLAG now indicates that
the TEST_TIM value is valid.

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 89

Main Menu

PTR: Parametric Test Record

The first PTR for a test establishes the default semi-static descriptive information for
that test. This use of the PTR replaces the PDR from V3.

TEST_NAM and SEQ_NAME have been dropped. They are now part of the TSR.

LO_SPEC and HI_SPEC have been added, for low and high spec limit values.

The fields for displaying the parametric test data have changed. The following fields
have been dropped:

RES_LDIG RES_RDIG DESC_FLG
HLM_LDIG HLM_RDIG
LLM_LDIG LLM_RDIG

In their place are these fields, which are ANSI C format strings:

C_RESFMT Test result
C_LLMFMT Low test and spec limit
C_HLMFMT High test and spec limit

ALARM_ID has been added.

The data type of UNITS has changed from C*7 to C*n. The Missing/Invalid flag is now
length byte = 0.

Bits 6 and 7 of PARM_FLG are now defined, to indicate whether a value that equals the
low or high limit is passing or failing.

The following OPT_FLAG bits have changed:

bit 1: Reserved for future use
bit 2: No low specification limit
bit 3: No high specification limit

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 90

Main Menu

MPR: Multiple-Result Parametric Record — New in V4

Contains the results of a single execution of a parametric test in the test program
where that test returns multiple values.

The first MPR for a test establishes the default semi-static descriptive information for
that test.

Data Fields (after header):
TEST_NUM Test number
HEAD_NUM Test head number
SITE_NUM Test site number
TEST_FLG Test flags (fail, alarm, etc.)
PARM_FLG Parametric test flags (drift, etc.)
RTN_ICNT Count of PMR indexes
RSLT_CNT Count of returned results
RTN_STAT Array of returned states
RTN_RSLT Array of returned results
TEST_TXT Descriptive text or label
ALARM_ID Name of alarm
OPT_FLAG Optional data flag
RES_SCAL Test result scaling exponent
LLM_SCAL Test low limit scaling exponent
HLM_SCAL Test high limit scaling exponent
LO_LIMIT Test low limit value
HI_LIMIT Test high limit value
START_IN Starting input value (condition)
INCR_IN Increment of input condition
RTN_INDX Array of PMR indexes
UNITS Units of returned results
UNITS_IN Input condition units
C_RESFMT ANSI C result format string
C_LLMFMT ANSI C low limit format string
C_HLMFMT ANSI C high limit format string
LO_SPEC Low specification limit value
HI_SPEC High specification limit value

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 91

Main Menu

FTR: Functional Test Record

The FTR has been significantly restructured for V4. The lists below show what fields
have been dropped and added.

Fields Dropped From V4:
DESC_FLG
VECT_ADR (compare the V4 field REL_VADR)
PCP_ADDR
VECT_DAT
DEV_DAT
RPIN_MAP (compare the V4 field SPIN_MAP)
TEST_NAM (moved to the TSR for this test)
SEQ_NAME (moved to the TSR for this test)

Fields Added for V4:
REL_VADR Relative vector address
XFAIL_AD X logical device failure address
YFAIL_AD Y logical device failure address
VECT_OFF Offset from vector of interest
RTN_ICNT Count of return data PMR indexes
PGM_ICNT Count of programmed state indexes
RTN_INDX Array of return data PMR indexes
RTN_STAT Array of returned states
PGM_INDX Array of programmed state indexes
PGM_STAT Array of programmed states
VECT_NAM Vector module pattern name
OP_CODE Vector Op Code
ALARM_ID Name of alarm
PROG_TXT Additional programmed information
RSLT_TXT Additional result information
PATG_NUM Pattern generator number
SPIN_MAP Bit map of enabled comparators

Other FTR Changes:

The first FTR for a test establishes the default semi-static descriptive information for
that test. This use of the FTR replaces the FDR from V3. Specifically, the fields
PATG_NUM and SPIN_MAP (both new with V4) contain semi-static information.

These data types have changed:

• REPT_CNT has changed from U*2 to U*4. Its Missing/Invalid flag is OPT_FLAG bit 2 =1.

• FAIL_PIN has changed form B*n to D*n.

• TIME_SET has changed from U*1 to C*n. Its Missing/Invalid flag is length byte = 0.

(continued)

Differences Between STDF V3 and V4 Changes to Specific STDF Record Types

STDF Specification V4 Page 92

Main Menu

Other FTR Changes (continued):

The meanings of the bit settings for OPT_FLAG have completely changed. Consult the
STDF Specification.

The meaning of Bit 1 of TEST_FLG has changed. It no longer indicates channel vs. pin.
It is now reserved for future use.

SHB: Site-Specific Hardware Bin Record — Dropped

The functionality of the SHB has been incorporated into the HBR.

SSB: Site-Specific Software Bin Record — Dropped

The functionality of the SSB has been incorporated into the SBR.

STS: Site-Specific Test Synopsis Record — Dropped

The functionality of the STS has been incorporated into the TSR.

SCR: Site-Specific Part Count Record — Dropped

The functionality of the SCR has been incorporated into the PCR (new with V4).

The following records are unchanged between Version 3 and Version 4:

BPS: Begin Program Section Record
EPS: End Program Section Record
GDR: Generic Data Record
DTR: Datalog Text Record

STDF Specification V4 Page 93

Main Menu

Glossary

Aborted part
A part is considered to have aborted if testing began on the part, but the part was not
tested to completion. For example, the operator may have interrupted testing of the
part via a keyboard command.

ADART
(Automatic Distribution Analysis in Real Time) A program used to perform statistical
analysis of test results in the testing computer. ADART produces histograms or
cumulative plots of test data, which may be read at any time during the testing process.

ASCII
(American Standard Code for Information Interchange) A code, using seven bit plus
parity, established by the American National Standards Institute (ANSI) to achieve
compatibility between devices exchanging character oriented data.

Data base
An electronic organization of data and information organized and maintained by a data
base management system. Data base implies integration of data across the entire
environment that it serves. It also implies central control of data for consistency and
accuracy with users having access to their authorized view of it.

Datalog
Listing of specific test information, such as test results and parameter values.

Die
A single semiconductor device within a wafer.

Glossary

STDF Specification V4 Page 94

Main Menu

Executive
A program or set of programs that provides a user environment to testing, program
development, debugging, data analysis services for a tester. Also known as a MOP.

Field
A defined unit of data/information in a record. A field defines the physical storage
location of a unit of data/information. One or more fields make up a record. A group of
records is called a file.

File
A group of related data elements (records) arranged in a structure significant to the
user and usually treated as a unit. A file can contain data, programs, or both.

File specification
A name that uniquely identifies a file maintained in any operating system. A file
specification generally consists of up to six components: (1) a node name specifying
which computer in the network owns the data; (2) a device name identifying the volume
on which the file is stored; (3) a directory name indicating the logical path for accessing
the file on the volume; (4) a file name; (5) a file extension; and (6) a file version number.
Not all operating systems support the full set of six components.

Finish time
The time at which the last device in the lot is finished testing.

Functional part
Any part that, when tested, does not go into the catastrophic failure bin (usually bin
0). The count of functional parts is kept in the FUNC_CNT field of the MRR and WRR and
is necessary for calculating the good-to-functional ratio.

Good part
Any part that, when tested, is placed in a bin containing parts acceptable for use and/or
sale. The count of good parts is kept in the GOOD_CNT field of the MRR and WRR and is
necessary for calculating the yield and good-to-functional ratio.

Hardware
Physical equipment as opposed to a computer program or method of use.

Hardware bins
Physical sort categories connected with a device handler for grading tested devices.

Histogram
A graphic representation of a frequency distribution in which the widths of the
contiguous vertical bars are proportional to the class intervals of the variables, and the
heights of the bars are proportional to the number of times that statistical data had a
value that fell into a class interval.

Glossary

STDF Specification V4 Page 95

Main Menu

Host computer
A computer attached to a network providing centralized primary services such as data
base access, data analysis software, test floor monitoring, test floor control, and
program development tools.

Insertion
The act of testing one lot of parts one time. A lot of parts may be tested several times
under different test conditions (such as wafer, cold, hot, pre-burnin, post-burnin, etc.).

Job plan
A set of related program statements grouped together in modules, designed to test a
specific part or device. Test engineers write, edit, and compile job plans on the testers,
at work stations, or on the host computer. Job Plans are also known as test plans or
test programs.

Lot
A batch of parts (often an entire production run) to be tested as a group through one or
more test cycles. A lot may be tested as a whole or as sublots. A lot may consist of
devices, boards, or wafers in quantities from one to thousands.

Lot disposition
A lot disposition is a decision as to the future of the lot. For example, after testing a lot
of wafers it may be decided that the yield was so low that the devices should not be
packaged.

Lot disposition code
A character code indicating the lot disposition.

Master operating program (MOP)
A program that functions as an operating system in a tester. More generally, a MOP is
any stand-alone program which can be bootstrapped into a network node. Also known
as an executive.

Network
An interconnected group of computers linked together for specific purposes, such as
sharing data files. ATE networks generally include tester computers, test plan
development stations, and host computers.

Network architecture
A formalized definition of the structures and interactions required to provide shared
communications functions.

Node
Any intelligent device that is connected to a network and is capable of sending and
receiving network messages.

Glossary

STDF Specification V4 Page 96

Main Menu

Operating system
Software that controls the execution of computer programs and provides some or all of
the following services: scheduling, debugging, input and output control, accounting,
storage assignment, and data management. Examples of operating systems include
VMS, UNIX, RSX-11, and VM/CMS.

Operator
A person responsible for testing parts at one test station of a tester.

Parts
For the purpose of this document, parts are electronic devices (both discrete
components and integrated circuits) and PC boards.

Privilege
A characteristic of a user or program that determines what kinds of operations a user
or a program can perform. In general, a privileged user or program can affect system
operations and/or data.

Retested part
A part which was tested more than once during the course of one insertion of a lot is
called a retest. Usually, parts will only be retested if a problem was detected the first
time the part was tested. For example, a part may be retested if it was inserted upside
down or in the handler contacts were not functioning properly

Sequencer
A sequencer (or sequencer function) can be viewed as the table of contents of a test
program. The sequencer function is a list of all the tests to be performed in order of
their execution. For each test, all limits, datalog formatting information, and binning
information is presented in a tabular, readable form, resembling a specification sheet.

Setup time
The time at which the operator begins setting up the tester for testing a lot. Setup
includes loading the job, adjusting the handler or prober, setting up the test head,
setting up datalog parameters, and any other operations which must be performed
before the first part is tested.

Software
A set of computer programs, procedures, rules, and associated documentation
concerned with the operation of computer systems.

Software bins
Logical sort categories implemented in the test plan for finer categorization of tested
parts than is provided by the hardware bins on the device handler. Software bins are
often used to detect degrees of “goodness” of devices so that the effect of variations in
the fabrication process can be more accurately predicted.

Start time
The time at which the first device in the lot (or wafer) begins testing.

Glossary

STDF Specification V4 Page 97

Main Menu

Sublot
A portion of a full lot of parts to be tested. Lots are often divided into sublots to
facilitate handling or tester scheduling.

Tester
A machine capable of separating good parts from bad. Most device testers are capable
of grading parts as well. All but the simplest testers are built with one or more
computers and are capable of test data collection and networking.

Test data
Raw and derived information collected from parts measured by a tester. Test data is
used for measuring the “goodness” of the parts being tested and of the process used in
making those parts.

Test head
A test head is a physical entity consisting of the hardware connections necessary to test
one or more devices. On parallel testers, a test head controls multiple test sites; on
non-parallel testers, test heads and test sites are equivalent. Each tester supports one
or more test heads capable of testing parts.

Test plan
A set of related program statements grouped together in modules, designed to test a
specific part or device. Test engineers write, edit, and compile test plans on the testers,
at work stations, or on the host computer. Test Plans are also known as job plans or
test programs.

Test program
See test plan.

Test site
A test site consists of the hardware connections necessary to test a single device. There
may be one or more test sites associated with a test head.

Test station
A test station is a logical software entity capable of loading and running a single test
plan. When used for testing parts, a test station is associated with one or more test
heads. In some testers each test station is permanently assigned to a single test head,
while in others the assignment is created by a software command. Each tester has one
or more test stations capable of executing test plans.

Wafer
A disk of single-crystal, high-purity semiconducting material used as the substrate in
the manufacture of integrated circuits. Wafers are processed in a series of steps which
add or subtract materials of a controlled size, shape, and purity to create integrated
circuits. Each wafer is then probed by Automatic Test Equipment. Good devices, or
dice, are then assembled into packages for final testing.

STDF Specification V4 Page i

STDF Specification V4

Index

Click on any page number.

Main Menu

A

Audit Trail Record (ATR)
definition

for STDF V4 17

B

Begin Program Section Record (BPS)
definition

for STDF V4 60

bin data
hardware vs. software, defined 23

D

Datalog Text Record (DTR)
definition

for STDF V4 64

datalogged results
STDF record types for

Functional Test Record (FTR) 55
Multiple-Result Parametric Record (MPR)

51
Parametric Test Record (PTR) 45

E

End Program Section Record (EPS)
definition

for STDF V4 61

F

File Attributes Record (FAR)
CPU identification in 10
definition

for STDF V4 16

filters
writing ATRs to STDF file 17

Functional Test Description Record (FDR)
replaced by FTR in STDF V4 56

Functional Test Record (FTR)
definition

for STDF V4 55
V3 vs. V4 91

use of PMR pin index 77

G

Generic Data Record (GDR)
definition

for STDF V4 62

Index

STDF Specification V4 Page ii

Main Menu

H

Hardware Bin Record (HBR)
definition

for STDF V4 23
V3 vs. V4 84

M

Master Information Record (MIR)
definition

for STDF V4 18
V3 vs. V4 83

Master Results Record (MRR)
definition

for STDF V4 21
V3 vs. V4 83

Multiple-Result Parametric Record (MPR)
definition

for STDF V4 51
use of PMR pin index 77

P

Parametric Test Description Record (PDR)
replaced by PTR in STDF V4 46

Parametric Test Record (PTR)
definition

for STDF V4 45
V3 vs. V4 89

storing and displaying data in 49

part count data
STDF record type for 22

Part Count Record (PCR)
definition

for STDF V4 22

part data
repair data, storing in STDF file 75
STDF record type for

Part Information Record (PIR) 40
Part Results Record (PRR) 41

Part Information Record (PIR)
definition

for STDF V4 40
V3 vs. V4 87

Part Results Record (PRR)
definition

for STDF V4 41
V3 vs. V4 87

storing repair information 75

Pin Group Record (PGR)
definition

for STDF V4 29
suggestion for use 77

pin index, definition and use 77

Pin List Record (PLR)
definition

for STDF V4 30
suggestion for use 77

Pin Map Record (PMR)
definition

for STDF V4 27
V3 vs. V4 85

pin index used by FTR and MPR 77
suggestion for use 77

R

record header
for STDF

fields of 6

repair information, storing in STDF file 75

retest data
STDF record type for 32

Index

STDF Specification V4 Page iii

Main Menu

Retest Data Record (RDR)
definition

for STDF V4 32

S

Site Description Record (SDR)
definition

for STDF V4 33

site group
STDF record type for 33

Site-Specific Hardware Bin Record (SHB)
dropped from STDF V4 92

Site-Specific Part Count Record (SCR)
dropped from STDF V4 92

Site-Specific Software Bin Record (SSB)
dropped from STDF V4 92

Site-Specific Test Synopsis Record (STS)
dropped from STDF V4 92

Software Bin Record (SBR)
definition

for STDF V4 25
V3 vs. V4 84

STDF files
filenames, rules for 65
order of records 67

STDF specification
data representation 8
differences between V3 and V4 79
filenames for 65
initial sequence of records 14
missing/invalid data 11
optional fields 11
order of records 67
record header 6
record types and subtypes

for Version 4 7
Version 3 vs. Version 4 80

record types, listed (V4) 15
required field, meaning of 12

synopsis data
STDF record type for 43

T

test data
STDF record type for

Test Synopsis Record (TSR) 43
STDF record types for

Functional Test Record (FTR) 55
Multiple-Result Parametric Record (MPR)

51
Parametric Test Record (PTR) 45

storing parametric data in STDF 49

test description data
how stored in STDF V4

for functional tests 56
for multiple-result parametric tests 52
for parametric tests 46

Test Synopsis Record (TSR)
definition

for STDF V4 43
V3 vs. V4 88

W

Wafer Configuration Record (WCR)
definition

for STDF V4 38
V3 vs. V4 87

wafer data
STDF record types for

Wafer Configuration Record (WCR) 38
Wafer Information Record (WIR) 35
Wafer Results Record (WRR) 36

Wafer Information Record (WIR)
definition

for STDF V4 35
V3 vs. V4 86

Index

STDF Specification V4 Page iv

Main Menu

Wafer Results Record (WRR)
definition

for STDF V4 36
V3 vs. V4 87

	Introduction to STDF
	STDF Design Objectives
	STDF Record Structure
	Record Types and Subtypes
	Data Type Codes and Representation
	Note on Time and Date Usage

	STDF Record Types
	STDF Filenames
	STDF File Ordering
	Storing Repair Information
	Using the Pin Mapping Records
	Differences Between STDF�V3�and�V4
	Record Types
	Data Types
	Filename Characters
	Required Records
	Changes to Specific STDF Record Types

	Glossary

